NET TECHNOLOGIES

UNIT 1

Asst. Prof. Jesica D’cruz .

The .NET Framework

e The .NET Framework is a comprehensive software platform developed by
Microsoft that provides tools, libraries, and runtime environments for building
and running various types of applications.

e The .NET Framework was primarily used for Windows applications, although
more versions like .NET Core (now .NET 5+ /6+/7+/8+) offer cross-platform
capabilities.

e .NET Framework consists of the common language runtime (CLR) and the
.NET Framework class library.

.NET Languages

e .NET Languages are computer programming languages that are used to
produce programs that execute within the Microsoft .NET Framework.

e Microsoft provides several such languages, including C#, Visual Basic .NET, and
C++/CLI

e _NET Framework supports more than 60 programming languages in which 11
programming languages are designed and developed by Microsoft.

e The remaining Non-Microsoft Languages which are supported by .NET
Framework but not designed and developed by Microsoft.

.NET Languages

e The types of applications that can be built in the .Net framework are classified
broadly into the following categories:

-> WinForms — This is used for developing Forms-based applications, which would
run on an end-user machine. Notepad is an example of a client-based application.

-> ASP.Net - This is used for developing web-based applications, which are made to
run on any browser such as Internet Explorer, Chrome, or Firefox. The Web

application would be processed on a server, which would have Internet
Information Services Installed.

-> ADO.Net - This technology is used to develop applications to interact with The
.Net Framework Databases such as Oracle or Microsoft SQL Server.

Few examples of Microsoft NET languages

C# - Microsoft's flagship .NET Framework language which bears
similarities to the C++ and Java languages.

Visual Basic .NET - A completely redesigned version of the Visual Basic
language for the NET Framework. This also includes Visual Basic 2005
(v8.0).

VBx, a dynamic version of Visual Basic .NET that runs on top of the
Dynamic Language Runtime.

C++/CLI and the deprecated Managed C++ - A managed version of the
C++ language.

J# - A Java and J++ NET transitional language.

JSeript NET - A compiled version of the JScript language.

Windows PowerShell - An interactive command line shell/scripting
language that provides full access to the NET Framework.

IronPython - A .NET implementation of the Python programming
language developed by Jim Hugunin at Microsoft.

IronRuby - A dynamically compiled version of the Ruby programming
language targeting the NET Framework.

F#, a member of the ML programming language family.

Components of .NET Framework

VB C++ | C# ‘JScript : JH#

Common Language Specification

ASP.NET: Web Services Windows
and Web Forms Forms

ADO.NET: Data and XML

Base Class Library

Common Language Runtime

The .Net framework mainly contains two components :

1. Common Language Runtime(CLR) 2. .Net Framework Class Library (FCL)

Components of .NET Framework

1. Common Language Runtime(CLR)

-> .Net Framework provides runtime environment called Common Language
Runtime (CLR).

It runs all the .Net programs.
CLR provides memory management and thread management.
It allocates the memory for scope and deallocates the memory.

The code which runs under the CLR is called as Managed Code.

A2 2

Programmers need not to worry on managing the memory if the programs are
running under the CLR. (memory management and thread management)

Components of .NET Framework

1. Common Language Runtime(CLR)

- Language Compilers (e.g. C#, VB.Net, J#) will convert the Code/Program to
Microsoft Intermediate Language-MSIL/Common Intermediate Language(CIL)
inturn this will be converted to Native Code by CLR.

-> There are currently over 15 language compilers being built by Microsoft and other
companies also producing the code that will execute under CLR.

Components of .NET Framework

.Net Framework Class Library (FCL)

2.

-> It accesses the library classes and methods.

-> Itis also called as Base Class Library.

- Itis common for all types of application.

-> Following are the applications in .Net Class Library:

1. XML web services

2. Windows services

3. Windows application
4. Web applications

5. Console application

C# Language Basics

C# (C-Sharp) is a object oriented programming language developed by Microsoft that
runs on the .NET Framework.

C# is used to develop web apps, desktop apps, mobile apps, games, and much more.
C# is an object-oriented programming language.

In Object-Oriented Programming methodology, a program consists of various objects
that interact with each other by means of actions.

The actions that an object may take are called methods.

Objects of the same kind are said to have the same type or, are said to be in the same
class.

C# Syntax

using System; —— use classes from the System namespace

HelloWorld namespace is used to organize your code, and
namespace REeloWOrld —— i is a container for classes and other

{ namespaces

class Program
class is a container for data and methods
{ Main method- Any code inside its curly

static void Main(string[] args) brackets {} will be executed

Console is a class of the System

WriteLine() method that is used

} to output/print text.

J If you omit the using System line, you would have to write
} System.Console.WriteLine() to print/output text.

Casting objects

* In C#, there are two types of casting:

* Implicit Casting (automatically) - converting a smaller type to a larger type size
char -> int -> long -> float -> double

Example:

int mylnt=09;

double myDouble = myInt; // Automatic casting: int to double
Console.WriteLine(myint); // Outputs 9
Console.WriteLine(myDouble); // Outputs 9

Casting objects

* Explicit Casting (manually) - converting a larger type to a smaller size type
double -> float -> long -> int -> char

Example:

double myDouble =9.78;

int myInt = (int) myDouble; // Manual casting: double to int
Console.WriteLine(myDouble); // Outputs 9.78

Console WriteLine(myint); // Outputs 9

It is also possible to convert data types explicitly by using built-in methods, such as

Convert.ToBoolean, Convert.ToInt32 (int) and

Convert.ToDouble, Convert.ToInt64 (long)
Convert.ToString,

Get User Input

* You have already learned that Console WriteLine() is used to output (print) values. Now we will
use Console.ReadLine() to get user input.

* In the following example, the user can input his or hers username, which is stored in the variable userName.
Then we print the value of userName:

Example:

Console WriteLine("Enter username:");

string userName = Console.ReadLine();
Console.WriteLine("Username is: " + userName);

* The Console.ReadLinefi) method returns a string. Therefore, you cannot get information from another data
type, such as int. The following program will cause an error:

Example:

Console.WriteLine("Enter your age:");

int age = Convert.ToIlnt32(Console.ReadLine());
Console.WriteLine("Your age is: " + age);

OBJECT BASED MANIPULATION

A C# program consists of the following parts:

Namespace declaration

A class

Class methods

Class attributes

A Main method

Statements and Expressions

Comments

using System;

namespace HellolWorld

{
class Program
{
static void Main(string[] args)
{
Console.Writeline("Hello World!");
// This is a comment
¥
¥

Classes

e Class is ablueprint for a data type.
e Objects are instances of a class.
e The methods and variables that constitute a class are called members of the class.

. <access specifier> class class_name {
Deﬁmng a Class // member variables

o - <access specifier> <data type> variablel;
A class definition starts with the

keyword class followed by the class
name; and the class body enclosed by
a pair of curly braces.

<access specifier> <data type> variable2;

<access specifier> <data type> variableN;

// member methods

<access specifier> <return type> methodN(parameter_list) {
// method body

}
}

Class methods

A method is a group of statements that together perform a task. Every C# program has at least
one class with a method named Main.

Defining Methods in C#
Syntax

<Access Specifier><Return Type><Method Name>(Parameter List) {

Method Body
\
)
Modifier Description
public The code is accessible for all classes
private The code is only accessible within the same class
protected The code is accessible within the same class, or in a class that is inherited from that
class. You will learn more about inheritance in a later chapter
internal The code is only accessible within its own assembly, but not from another assembly.

You will learn more about this in a later chapter

Calling Method:

using System;
namespace CalculatorApplication {
class NumberManipulator {
public int FindMax(int num1, int num2) {int result;
if (num1 > num2)
result = numi;
else
result = num2;
return result;}
static void Main(string[] args) {int a = 100;
int b = 200;
int ret;
NumberManipulator n = new NumberManipulator();
ret = n.FindMax(a, b);
Console.WriteLine("Max value is : {0}", ret);
Console.ReadLine();

} } }

Namespace and Assemblies

* A namespace is designed for providing a way to keep one set of names separate from another.
The class names declared in one namespace does not conflict with the same class names
declared in another.

. fA namespace definition begins with the keyword namespace followed by the namespace name as
ollows -

namespace namespace_name {
// code declarations

}

* To call the namespace-enabled version of either function or variable, prepend the namespace
name as follows -

namespace_name.item_name;

using System;
namespace first_space {
class namespace_cl {
public void func() {Console.WriteLine("Inside first_space"); }
}
}
namespace second_space {
class namespace_cl {
public void func() {Console. WriteLine("Inside second_space");}
}
}

class TestClass {
static void Main(string[] args) {
first_space.namespace_cl fc = new first_space.namespace_cl();
second_space.namespace_cl sc = new second_space.namespace_cl();
fc.func();
sc.func();
Console.ReadKey();

* An Assembly is a basic building block of .Net Framework anIications. It is basically a compiled
code that can be executed by the CLR. An assembly is a collection of types and resources that are
built to work together and form a logical unit of functionality. An Assembly can be a DLL or exe
depending upon the project that we choose.

* Assemblies are basically the following two types:
Private Assembly
Shared Assembly

1. Private Assembly

* Itisan assembl¥ that is being used by a single application only. Supﬁose we have a Broject in
which we refer to a DLL(Dynamic Link Libraries) so when we build that project that DLL will be
copied to the bin folder of our project. That DLL becomes a private assembly within our project.
Generally, the DLLs that are meant for a specific project are private assemblies.

2. Shared Assembly

* Assemblies that can be used in more than one project are known to be a shared assembly. Shared
assemblies are generally installed in the GAC(Global Assembly Csche). Assemblies that are
installed in the GAC are made available to all the .Net applications on that machine.

Inheritance

* Inheritance is an important pillar of OOP(Object Oriented ProFramminF). It is the
mechanism in C# by which one class is allowed to inherit the features(fields and
methods) of another class.

Important terminology:

* Super Class: The class whose features are inherited is known as super class(or a
base class or a parent class).

* Sub Class: The class that inherits the other class is known as subclass(or a derived
class, extended class, or child class). The subclass can add its own fields and
methods in addition to the superclass fields and methods.

* Reusability: Inheritance sugports the concept of “reusability”, i.e. when we want
to create a new class and there is already a class that includes some of the code
that we want, we can derive our new class from the existing class. By doing this,
we are reusing the fields and methods of the existing class.

* Single Inheritance: In single inheritance, subclasses inherit the features of one
superclass. In image below, the class A serves as a base class for the derived class
B.

* Multilevel Inheritance: In Multilevel Inheritance, a derived class will be inheriting
a base class and as well as the derived class also act as the base class to other
class. In below image, class A serves as a base class for the derived class B, which

in turn serves as a

ase class for the derived class C.

* Hierarchical Inheritance: In Hierarchical Inheritance, one class serves as a
superclass (base class) for more than one subclass. In below image, class A serves

as a base class for the derived class B, C, and D.

Single Inheritance

s]

(2]

Multilevel Inheritance

Hierarchical Inheritance

* Multiple Inheritance(Through Interfaces):In Multiple inheritance, one class can
have more than one superclass and inherit features from all parent classes.
Please note that C# does not support multiple inheritance with classes. In C#, we
can achieve multiple inheritance only through Interfaces. In the image below,
Class Cis derived from interface A and B.

* Hybrid Inheritance(Through Interfaces): It is a mix of two or more of the above
txpes of inheritance. Since C# doesn’t support multiple inheritance with classes,
the hybrid inheritance is also not possible with classes. In C#, we can achieve

hybrid inheritance only through Interfaces.

A

"

; ; N

c N

D

Multiple Inheritance

Hybrid Inheritance

Static members

Declaring a member of a class as static, it means no matter how many
objects of the class are created, there is only one copy of the static
member.

The keyword static implies that only one instance of the member exists
for a class.

Static variables are used for defining constants because their values can
be retrieved by invoking the class without creating an instance of it.

Static variables can be initialized outside the member function or class
definition.

The static variables can also be initialized inside the class definition.

namespace StaticVarApplication {

° class StaticVar {
St at I C m e m b e rS public static intnum;
public void count() {
num-++;
f
public intgetNum() {
return num;
}
H
class StaticTester {
static void Main(string[] args) {
StaticVar s1 = new StaticVar():
StaticVar s2 = new StaticVar();
sl.count();
sl.count():
sl.count():
s2.count();
s2.count():
s2.count():
Console. WriteLine("Variable num for s1: {0}", s1.getNum());
Console. WriteLine("Variable num for s2: {0}", s2.getNum());
Console.ReadKey():
}
H
b

Partial class

A partial class splits the definition of a class over two or more source
files. We can create a class definition in multiple files but it will be
compiled as one class.

Suppose we have a "Person’ class. That definition is divided into the two
source files "Person1.cs" and "Person2.cs”. Then these two files have a

class that is a partial class. —

. o

fig. 2.10 partial class

Compile to
one single

class

ASP.NET is an open source web
framework, created by Microsoft, for
building modern web apps and services
with .NET.

ASP.NET is cross platform and runs on
Windows, Linux, macOS, and Docker.

ASP.NET is a web framework designed and
developed by Microsoft.

It is used to develop websites, web
applications and web services.

It provides fantastic integration of HTML,
CSS and JavaScript.

It is built on the Common Language
Runtime (CLR) and allows programmers to
write code using any supported .NET
language.

ASP .NET

Anatomy of a Web Form

e An ASP.NET page is made up of a number of server controls along with
HTML controls, text, and images.

e Sensitive data from the page and the states of different controls on the
page are stored in hidden fields that form the context of that page
request.

e An ASP.NET page is also a server side file saved with the .aspx
extension.

e Itis modularin nature and can be divided into the following core
sections:

1. Page Directives: set up the environment for the page to run

2. Code Section: code section or the code behind file provides all these
event handler routines, and other functions used by the developer.

3. Page Layout: The page layout provides the interface of the page.

Anatomy of a Web Form

Webform.aspx

&0 Page Language="C#" AutoEventWireup="true" CodeBehind="WebForml.aspx.cs"
Inherits="WebApplication2.WebForml" 3

L J¥ T L)[— htm".

=E<html xmlns="http://www.w3.0org/1999/xhtml"™
é head runat—"server"-
1 H hl>Welcome to my Page</hl
12 = form id="forml" runat="server"
1 = di
14 asp:TextBox ID="TextBoxl" runat="server"></asp:TextBox
asp:Button ID="Buttonl" runat="server" Text="Button”
1 I form
18 [][body
L el

Anatomy of a Web Form

Explanation of the elements:

1. @ Page directive: The @ rage directive specifies attributes of the page, such as the language, code-
behind file, and class inheritance.

2. Static HTML: The <ni> tag and other HTML elements are rendered exactly as they are, displaying
"Welcome to My ASP.NET Page".

3. HTML and server-side comments: Both HTML (<:-- -->) and server-side (<x-- --x>) comments can be
used to add explanatory text to the page, though server-side comments won't be sent to the client.

4. <form> and ASP.NET server controls: Here, we have an ASP.NET form containing a TextBox control
(<asp:Texteox>) and a Button control (<asp:sutton>). These controls are server-side controls.

Page Directives

The Page directive defines the attributes specific to the page file for the page parser
and the compiler.

The page directive gives ASP.NET basic information about how to compile the page.
It indicates the language used for the code and the way to connect event handlers.

If the code-behind approach is used, the page directive also indicates where the code
file is located and the name of the custom page class.

The basic syntax of the Page directive is:

<% @ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default"

Trace="true" %>

Some Page Directive Attributes

Attribute name

AutoEventWireup

Language

CodeBehind

Inherits

ClientTarget

ErrorPage

Description

This attribute specifies whether the page parser should automatically
bind page events to methods in the code-behind class. The default value
is true .

This attribute specifies the programming language for the code-behind
file.

The name of the code behind file.

This attribute specifies the name of the code-behind or other class that
inherits from the Page class.

This attribute specifies the browser for which the server controls should
render content.

This attribute specifies the URL that the page should redirect to if an
unhandled page exception occurs.

Code-behind Class

1. The code-behind class is an essential concept that separates the visual
presentation (Ul markup) of a web page from the code logic that controls its
behavior and functionality

2. Itis composed in a different class record that can have the extension of
.aspx.cs or .aspx.vb relying upon the language used.

3. This relationship between your class and the web page is established by a Page
directive at the top of the .aspx file using the inherits attribute.

Example in C#:
Markup (WebForm.aspx):

<asp:Button ID="btnSubmit" runat="server" Text="Submit" OnClick="btnSubmit_Click" />

Code-Behind (WebForm.aspx.cs):

using System;
using System.Web.UI;

namespace MywWebApp

{
public partial class WebForm : Page
{
protected void Page_Load(object sender, EventArgs e)
{
// Page load logic
}
protected void btnSubmit_Click(object sender, EventArgs e)
{
// Handle button click event
lb1lMessage.Text = "Button clicked!";
}
}

Adding Event Handlers

* An event is an action or occurrence such as a mouse click, a key press, mouse
movements, or any system-generated notification. A process communicates
through events.

* For example, interrupts are system-generated events. When events occur, the
application should be able to respond to it and manage it.

* Events in ASP.NET raised at the client machine, and handled at the server
machine.

* For example, a user clicks a button displayed in the browser. A Click event is
raised. The browser handles this client-side event by posting it to the server.

* The server has a subroutine describing what to do when the event is raised; it is
called the event-handler.

* Therefore, when the event message is transmitted to the server, it checks
whether the Click event has an associated event handler. If it has, the event
handler is executed.

Adding Event Handlers

* Event Arguments

* ASP.NET event handlers generally take two parameters and return void. The first
parameter represents the object raising the event and the second parameter is
event argument.

* The general syntax of an event is:

private void EventName (object sender, EventArgs e);
Example in C#:

Markup (WebForm.aspx):

<asp:Button ID="btnSubmit" runat="server" Text="Submit" OnClick="btnSubmit_Click" />

Code-Behind (WebForm.aspx.cs):

protected void btnSubmit_Click(object sender, EventArgs e)

{
// Handle button click event
lb1Message.Text = "Button clicked!";

Adding Event Handlers

* Application and Session Events
The most important application events are:

I

2.
3.
4

ol

Application_Start - It is raised when the application/website is started.
Application_End - It is raised when the application/website is stopped.
Similarly, the most used Session events are:

Session_Start - It is raised when a user first requests a page from the
application.

Session_End - It is raised when the session ends.

Adding Event Handlers

* Page and Control Events
Common page and control events are: The common control events are

1. DataBinding - It is raised when a control Boaik Attrbale Cankrols
binds to a data source.

2. Disposed - It is raised when the page or the
control is released.

Click OnClick Button, image button, link
button, image map

3 Error _ |t iS a page event. occurs when an Command OnCommand Button, image button, link
3 . . , |
unhandled exception is thrown. i
4. Init - Itis raised when the page or the control ™" ey e
IS |n|t|aI|zed. SelectedindexChanged OnSelectedindexChanged Drop-down list, list box,
5. Load - Itis raised when the page or a control radio buton s, check box
is loaded. st

6. PreRender - It is raised when the page or the cnecedchanged OnCheckedChanged Check box, radio buton
control is to be rendered.

7. Unload - It is raised when the page or control
is unloaded from memory.

ANATOMY OF AN ASP.NET APPLICATION

ASP.NET File Types

.dasax

.dSCX

.ashx

ASmx

.aspx

Typically a Global.asax file that represents the application
class and contains event handlers that run at various points
in the application life cycle.

A Web user control file that defines a custom
functionality that you can add to any ASP.NET Web

Forms page.

A handler file that 1s invoked in response to a Web request
in order to generate dynamic content.

An XML Web services file that contains classes and
methods that can be invoked by other Web applications.

An ASP.NET Web Forms page that can contain Web
controls and presentation and business logic.

ASP.NET File Types

.cd

.config

.Cs, .vb

.csproj, .vbproj
dll

.Jmaster

A class diagram file.

A configuration file contains XML elements that
represent settings for ASP.NET features.

Source code files (.cs or.vb files) that define code that can
be shared between pages

A project file for a Visual Studio Web-application project.
A compiled class library file (assembly).

A master page that defines the layout for other Web pages
in the application.

ASP.NET File Types

.mdb

JESOUrces, .resx

.sitemap

.sln

An Access database file.

A resource file that contains resource strings that refer to
images, localizable text, or other data.

A sitemap file that defines the logical structure of the Web
application. ASP.NET includes a default sitemap provider
that uses sitemap files to display a navigational control in
a Web page.

A solution file for a Visual Studio project.

Solution Explorer * 3 x
BE- - K-
olution Explorer (Ctris:) P~

ASP.NET Web Folders et

&p Connected Services

b M Properties
b w® References
App_Data
o , 25
The App_Data folder can contain application data files like & = an™
LocalDB, .mdf files, XML files, and other data related files. R~y
lIS will never serve files from App_Data folder. b Wm

B favicon.ico

= App_Sta rt b &) Global.asax

¢ packages.config
The App_Start folder can contain class files that will be MR
executed when the application starts. Typically, these would

RAE- -G BD ;‘.:j

be config files like AuthConfig.cs, BundleConfig.cs, et Ll =
FilterConfig.cs, RouteConfig.cs etc. MVC 5 includes
BundleConfig.cs, FilterConfig.cs and RouteConfig.cs by e
default. We will see the significance of these files later. =

b © BundeConfig.cs
b FiterConfig.cs
b RouteConfig.cs
] Content
b Controflers

* Content

The Content folder contains static files like CSS files, images, and icons files. MVC 5 application includes
bootstrap.css, bootstrap.min.css, and Site.css by default.

* fonts

The Fonts folder contains custom font files for your application.
* Scripts

The Scripts folder contains JavaScript or VBScript files for the application. MVC 5 includes javascript files for
bootstrap, jquery 1.10, and modernizer by default.

Solution Explorer

QB B-CFP Fl=

Solution Explorer

Solution Explorer

@ & -

Search Solution Explorer (Ctri+;)

32 Solution 'MyMVCApplication’ (1 project)
4 T MyMVCApplication

& Connected Services

-G & @ -

= -

Search Solution Explorer (Ctrl+; R~ Sesrch Solution Explorer (Ctel+;) R~ p S Properties
fa] Solution ‘MyMVCApplication’ (1 project) &) Solution * CApplication’ (1 project) b =@ References
4 [MyMVCApplication — — | App.Dete
" &2 MyMVCApplication b App_Start
& Connected Services = y b a Content
) & Connected Services
b e Properties 5 . b Controlters
b =@ References ’ o i ::::els
i App_Data b =m References ;
b W App_Start 22 APP_Dm LT bootstrap.js
4 o Content b = App-S{gn T boot‘lvcp.min.jt .
b i Content LT jquery-3.3.1.intellisense.js
B bootstrap-theme.css : LT jquery-331js
B bootstrap-theme.css.map 3 | Controllers LT jquery-33.1.minjs
bootstrap-theme.min.css 4 ol fonts M jauery-331.minmap
. IT jquery-3.3.1 slim.js
B bootstrap-theme.min.css.map h [glyphicons-halflings-regular.eot LT jquery-3.34 slim.min,js
bootstrap.css e‘}] glyphicons-halflings-regular.svg ,query-)j.,l.sllm.mn.map
2 bootstrap.css.map -~ . L LT jquery.validate-vsdoc js
3 v glyphicons-halflings-regular.ttf LT jauery valideteje
g bootstrap.min.css [glyphicons-halflings-regular.woff g jquery.validate.min.js
& bootstrap.min.css.map - - LT jquery.validate.unobtrusive js
) glyphicons-halflings-regular.woff2 B Yoy b paaianiadioi sl
Site.css s
b E trof | Models LT modernizr-2.83 s
W Controllers b - A .

* Global.asax

Global.asax file allows you to write code that runs in response to
application-level events, such as Application_BeginRequest,
application_start, application_error, session_start, session_end, etc.

* Packages.config

Packages.config file is managed by NuGet to track what packages and
versions you have installed in the application.

* Web.config
Web.config file contains application-level configurations.

The HTML server controls are
basically the standard HTML
controls enhanced to enable
server side processing.

By default, HTML elements(anchor H T M L

tag, header tags ,input elements

etc) on an ASP.NET Web page are

not available to the server. S E RV E R
These components are treated as

simple text and pass through to C O N T RO LS

the browser.

HTML server controls provide
automatic state management and
server-side events.

CONVERT HTML ELEMENT TO SERVER CONTROL

e Adding the attribute runat="server" and adding an id attribute to make them available for
serverside processing.

For example, consider the HTML nput control:
<input type="text" size="40">
[t could be converted to a server control, by adding the runat and 1d attribute:

<input type="text" 1d="testtext" size="40" runat="server">

e Allthe HTML Server controls can be accessed through the Request object.

e The HTML server controls have the same HTML output and the same properties as their
corresponding HTML tags.

Example
<form id="form1" runat="server">
<div>
<input id="Text1" type="text" runat="server"/>
<asp:Button |ID="Button1" runat="server" Text="Button" OnClick="Button1_Click"/>
</div>
</form>

protected void Button1_Click(object sender, EventArgs e)

{
string a = Request.Form["Text1"];

Response.Write(a);

The following are HTML server controls that are available in ASP.NET:-

¢ HtmlButton Control e HtmlInputRadioButton Control
e HtmlForm Control e HtmlInputText Control

e Htmllmage Control ° HtmlSelect Control

. HtmlInputButton Control . HtmlTable Control

o HtmlInputCheckBox Control . HtmlTableCell Control

. HtmlInputFile Control o HtmlTableCell Control

e HtmlInputHidden Control e HtmlTextArea Control

e HtmlInputlmage Control

VIEW STATE

ViewState is a built-in feature in ASP.NET that allows you to preserve and maintain the
state of controls and data between postbacks.

Postbacks occur when a page is submitted to the server for processing, typically
triggered by user actions like button clicks.

It is a Page-Level State Management technique.

Advantages of View State

Simplicity and Ease of Use - There is no need for complex codes and logical thinking to
implement ViewState. It is simple and makes storing form data between page
submissions easy.

Flexibility - It is easy to enable, configure, and disable View State properties on a
control-by-control basis.

Server-Independent - There are absolutely no server resources required to use View
State. It is contained in a structure within the page load.

Enhanced Security - The View State values go through hashing, encoding, and
compression for Unicode implementation.

VIEW STATE

Disadvantages of View State

Security Risk: The Information of View State can be seen in the page output source
directly. You can manually encrypt and decrypt the contents of a Hidden Field, but It
requires extra coding. If security is a concern then consider using a Server-Based state
Mechanism so that no sensitive information is sent to the client.

Performance: Performance is not good if we use a large amount of data because View
State is stored in the page itself and storing a large value can cause the page to be slow.

Device limitation: Mobile Devices might not have the memory capacity to store a large
amount of View State data.

It can store values for the same page only

THE HTMLCONTROL CLASS

e The HtmIControl object is pretty important to HTML server controls. Because every
property and method it has is inherited by every HTML server control

e The HTML server controls have their own properties and methods, as well, but they all
have the properties and methods contained in the HtmlControl object.

Property
Wttribute

pPisabled

1D
Style
TagName

Visible

Description
Returns the object's attributes collection.

A Boolean (true or false) value that you can get or set that indicates whether a control is disabled. |

EnableviewstateA Boolean (true or false) value that you can get or set that indicates whether a control should maintain its viewstate. |

A string that you can get or set that defines the Identifier for the control. |
Returns the cssstylecollection for a control.
'Returns the tag name of an elemen such as input Or div.

A Boolean (true or false) value that you can get or set that indicates whether a control is rendered to HTML for delivery [
to the client's browser.

HtmlContainerControl Class

* HtmlContainerControl is used as the parent for any HTML control that
requires a closing tag, such as div, form, or select.

* This class actually inherits all its properties and methods from
the HtmlControl class and adds a few of its own. So to clarify, any
object that is a container-type object doesn't directly inherit from

the HtmlControl class.
* The HtmlContainerControl actually inherits the HtmlControl, and then

when a container-type object uses the HtmlContainerControl it gets
the HtmlControl class's objects that way.

Html InputControl Class

e Just like the HtmIContainerControl, the Htmllnput inherits from the HtmIControl
and adds a few properties of its own for the different object that live off it.
e It brings three additional properties to the table

Property

Name

Type

Value

Description
Gets or sets the unique name for the vtmlinput control.
Determines what kind of 1nput element the Html1nput control is.

Gets or sets the value of the content of the ntm11nput Object.

The following controls, which are based on the HTML INPUT element,
are available on the HTML tab of the Toolbox:

. Input (Button) control: INPUT type="button" element

. Input (Checkbox) control: INPUT type="checkbox" element
o Input (File) control: INPUT type="file" element

- Input (Hidden) control: INPUT type="hidden" element

. Input (Password) control: INPUT type="password" element
. Input (Radio) control: INPUT type="radio" element

- Input (Reset) control: INPUT type="reset" element

. Input (Submit) control: INPUT type="submit" element

. Input (Text) control: INPUT type="text" element

Page Class

e Page class represents an .aspx file, also known as a Web Forms page, requested
from a server that hosts an ASP.NET Web application.
e Every web page is a custom class that inherits from the system.web.Ul.Page

control.
e Page class acquires a number of properties that our code can use:

. IsPostBack :- This Boolean property indicates whether this is the first
time the page 1s being run (False) or whether the page i1s being
resubmitted in response to a control event, typically with stored view
state information (True).

o EnableViewState :- When set to False, this overrides the

EnableViewState property of the contained controls, thereby ensuring
that no controls will maintain state information.

Page Class

B Application :- This collection holds information that’s shared
between all users in the website. For example, we can use the
Application collection to count the number of times a page has been
visited.

o Session :- holds information for a single user, so it can be used in
different pages. For example, we can use the Session collection to
store the items in the current user’s shopping basket on an e-
commerce website.

Page Class

Cache :- allows us to store objects that are time-consuming to create
so they can be reused in other pages or for other clients. Improves
performance of the web pages.

Request :-HttpRequest object that contains information about the
current web request.

Response :-HttpResponse object that represents the response
ASP.NET will send to the user’s browser.

global.asax File

global.asax allows you to write code that runs in response to "system level" events, such
as the application starting, a session ending, an application error occuring, without
having to try and shoe-horn that code into each and every page of your site.

1. Application_Start: Fired when the first instance of the HttpApplication class is

created. It allows you to create objects that are accessible by all HttpApplication
instances.

2. Application_End: Fired when the last instance of an HttpApplication class is
destroyed. It's fired only once during an application's lifetime.

Session_Start: Fired when a new user visits the application Web site.

4. Session_End: Fired when a user's session times out, ends, or they leave the
application Web site.

global.asax File

5. Application_BeginRequest: This event is triggered at the beginning of each HTTP
request made to the application. It's useful for performing preprocessing tasks before the
actual request processing begins.

6. Application_AuthenticateRequest: Fired when the security module has established
the current user's identity as valid. At this point, the user's credentials have been
validated.

7. Application_Error: Fired when an unhandled exception is encountered within the
application.

WEB.CONFIG

Every web application includes a web.config file that configures fundamental
settings—everything from the way error messages are shown to the security
settings that lock out unwanted visitors.

The settings are stored in XML files that are separate from your application
code. In this way you can configure settings independently from your code.

Visual Studio generates a default web.config file for each project.

An application can run without a web.config file, however, we cannot debug an
application without a web.config file.

NETTECHNOLOGIES

e Web Controls are small
building blocks of the GUI
(Graphical User Interface),
which include labels, text
box, buttons, etc which
provide rich functionality
in your pages.

Allow developers to create
dynamic and interactive web
pages without writing
extensive HTML or JavaScript
code.

Advantages of Web Controls over HTML Elements:

1. Abstraction for consistent UI across browsers.
2. Server-side events for easy code execution.

3. Automatic ViewState management.

4, Built-in rich functionality and customization
options.

5. Simplified development with reduced reliance on
JavaScript

Web control classes are
defined in the
System.Web.UI.WebControls
namespace.

~ AdRotator I~ PlaceHolder [
— Calendar — Repeater I
g —
- BaseDatalist 5

e Web controls provides the properties, methods, and events that
are common to all Web server controls.

e Most web controls begin by inheriting from the WebControl base
class.

e This class defines the essential functionality for tasks such as
data binding and includes some basic properties that you can use
with almost any web control.

Properties of WebControl Base Class:

Property
AccessKey
BackColor
ForeColor
BorderColor
BorderWidth
BorderStyle
Enabled
EnableViewState
Font
Height/Width
ID

Description

Sets focus on the web control.

Sets the background color.

Sets the foreground color (text color).
Sets the border color.

Specifies the control border width.

Sets the border style (e.g., Dotted, Solid).
Enables or disables user interaction.
Manages the automatic state management.
Specifies the font for text in the control.
Sets the dimensions of the control.

Specifies the identifier for code interaction.

Properties of WebControl Base Class:

Page References the containing web page as a Page object.
Parent Sets the parent control.

TablIndex Controls the tab order of the control.

ToolTip Sets the tooltip text displayed on hover.

Visible Controls visibility; not rendered if false.

Methods of WebControl Base Class:

Method
AddAttributesToRender
ClearChildState
ClearChildViewState
CreateChildControls
DataBind

Dispose

Focus

GetType

OnLoad
OnPreRender
OnUnload

ToString

Description

Adds HTML attributes and styles for rendering.
Clears view-state and control-state of child controls.
Clears view-state of child controls.

Creates child controls.

Binds a data source to control and child controls.
Cleans up before releasing from memory.

Sets input focus to the control.

Retrieves the Type of the current instance.
Raises the Load event.

Raises the PreRender event.

Raises the Unload event.

Returns a string representation of the object.

Events of WebControl Base Class:

Event Description

DataBinding Occurs when the control binds to data.
Disposed Occurs when the control is disposed.
Init Occurs when the control is initialized.
Load Occurs when the control is loaded.
PreRender Occurs before rendering.

Unload Occurs when the control is unloaded.

The list controls include the
ListBox

DropDownList

CheckBoxList

RadioButtonList

BulletedList

Work same way but are
rendered differently

All the selectable list
controls provide a
SelectedIndex property that
indicates the selected row as
a zero-based index.

For example, if the first
item in the list 1is selected,
the SelectedIndex will be 0.

_ —
Item 1

Represents a user interface element for tom 2
displaying a list of items, allowing ltem 3
single or multiple item selection. tem 4

ltem 5
The SelectionMode property determines e
whether single or multiple items can be Wom 7
selected. Scrollable, Single-Select Listbox
In single selection mode, only one qitem Aveliable itema:
can be selected. tem 1
In multiple selection mode, users can :::
select multiple items by pressing Ctrl or Rk
Shift key. tem 5

ltem 6

Example of creating a ListBox:

Itam 7

Scrollable, Multiselect Listbox

<asp:ListBox id="ListBox1l" SelectionMode="Single" runat="server">
<asp:ListItem>Item 1</asp:ListItem>
<asp:ListItem>Item 2</asp:ListItem>
<asp:ListItem>Item 3</asp:ListItem>

</asp:ListBox>

protected void lbl_SelectedIndexChanged(object sender, EventArgs e

string msg = "";
foreach (ListItem li in lbl.Items)
{

if (li.Selected == true)

{

msg += "
" + li.Text + " is selected.";

¥
}
Labell.Text = msg;

Common Properties of ListBox

Property Description

Items Gets the collection of items in the list control.

SelectionMode | This property will set the selection mode as single
selection or multiple selection

Rows This will determine the number of items shows 1n the
list box.

SelectedIndex | Gets or sets the lowest ordinal index of the selected
items 1n the list.

SelectedValue | Gets the value of the selected item 1n the list control,
or selects the item 1n the list control that contains the
specified value.

e Allows users to select an item from a predefined list.
e Supports selecting only one item at a time.

e Example of creating a DropDownList:

Select an item:

Select an item v

Select an item
Item 1
ltem 2
ltem 3
ltem 4
ltem 5

<asp:DropDownList ID="DropDownList1" runat="server" >
<asp:Listltem Value="">Please Select</asp:Listltem>
<asp:Listltem>item| </asp:Listltem>
<asp:Listltem> item2</asp:Listltem>
<asp:Listltem> 1tem3</asp:Listltem>
<asp:Listltem> item4</asp:Listltem>
</asp:DropDownList>

.d DropDownListl_SelectedIndexChanged(object sender, EventArgs e)

Labell.Text = ddl1l.SelectedValue;

Used when selecting one or more options from
several choices.

Supports selecting multiple items.

Example of creating a CheckBoxList:

<asp:CheckBoxList id="checkboxlistl1" runat="server">
<asp:ListItem>Item 1</asp:ListItem>
<asp:ListItem>Item 2</asp:ListItem>
<asp:ListItem>Item 3</asp:ListItem>
</asp:CheckBoxList>

id CheckBoxListl_SelectedIndexChanged(object EventArgs e)

Labell.Text = "Selected Item(s):

";
for (int i = 0; i < ckl.Items.Count; i++)

{

if (ckl.Items[i].Selected)
{

Labell.Text += ckl.Items[i].Text + "
";

RADIO BUTTON LIST Dansk

Nederlands
e Displays a list of radio buttons. @ English
e Allows selecting only one item. Suomi
e Example of creating a RadioButtonList: Francais

<asp:RadioButtonList id="RadioButtonListl1" runat="server">
<asp:ListItem>Item 1</asp:ListItem>
<asp:ListItem>Item 2</asp:ListItem>
<asp:ListItem>Item 3</asp:ListItem>
</asp:RadioButtonList>

id RadioButtonListl_SelectedIndexChanged(object sender, EventArgs e)

Labell.Text = rbl.SelectedValue;

Common properties:

Property Description
Rt Lavet Determines whether the radio buttons display in
i an HTML table.

RepeatColumns It displays the number of columns of radio
buttons.
The direction that the radio buttons repeat. By

RepeatDirection default RepeatDirection value 1s vertical.
Possible values are Horizontal and Vertical.

e Displays items in different styles (unordered or ordered
list).

e Supports various bullet styles like Circle, Disc, Square,etc.

e Example:

<asp:BulletedList ID="BulletedListl1l" runat="server'"></asp:BulletedList>

Property Description

To set the style and looks of the bullet list this

BulletStyle property is used.

In an ordered list, this sets the first value. Ex.
FirstBulletNumber If you set FirstBulletNumber to 3, the list
might read 3.4.5 for Numbered.

Determines whether the text of each item 1s
rendered as text or a hyperlink.

DisplayMode

Table class 1is used to build
an HTML table.

Table class 1is included 1in
System.Web.UI.Controls
namespace.

Essentially, the Table
control is built out of a
hierarchy of objects.

Each Table object contains
one or more TableRow objects.
In turn, each TableRow object
contains one or more
TableCell objects.

Each TableCell object
contains other ASP.NET
controls or HTML content that
displays information.

A Sample Teble object

{2 Rows, 3 Columns)
TableRow
TableCell TableCell TableCell
HTML or Server HTML or Server HTML or Server
Controls Controls Controls
TableRow
TableCell TableCell TableCell
HTML or Server HTML or Server HTML or Server
Controls Controls Controls

Figure 5.2: Table object

Properties of

Table class

Property Description

Runat This property state that the web control is a
server control. For this purpose, we have to
set value of runat to “server”

Rows This property state group of rows in the
table

Caption This property 1s used to set title to table

CaptionAlign This property 1s used to set alignment of the
caption text.

CellPadding This property is used to state the space
between the cell walls and controls in table.

CellSpacing This property is used to determines distance
between cell of tables.

GridLines This property is used to set gridline format
in the table.

HorizontalAlign Gets or sets the horizontal alignment of

the Table control on the page.

Creating table at design time:

<asp:Table id="Tablel" runat="server" CellPadding="10" GridLines="Both" HorizontalAlign="Center">
<asp:TableRow>
<asp:TableCell>
Row 0, Col ©
</asp:TableCell>
<asp:TableCell>
Row @, Col 1
</asp:TableCell>
</asp:TableRow>
<asp:TableRow>
<asp:TableCell>
Row 1, Col ©
</asp:TableCell>
<asp:TableCell>
Row 1, Col 1
</asp:TableCell>
</asp:TableRow>
</asp:Table>

One of the main limitations of HTML server controls is their
limited set of useful events—they have exactly two.

HTML controls that trigger a postback, such as buttons, raise
a ServerClick event.

Input controls provide a ServerChange event that doesn’t
actually fire until the page is posted back.

Web Client

Web Page Request

< HTML Output Returned

>

ASP.NET creates page
object from.aspx code

v

ASP.NET runs the
Page.Load event handler

v

Page Postback

Final page is rendered

HTML Output Returned

>

ASP.NET creates page
object from .aspx code

\ 2

ASP.NET runs the
Page.Load event handler

L4

ASP.NET runs any other
triggered event handlers

) 2

<

Final page is rendered

Figure 5.3: The page-processing sequence

The page-processing sequence

When event occurs on client side some events such as Click
event of a button take place immediately, because when
clicked, the button post back the page.

However, other actions do cause events but don’t trigger a
postback.

For example, when user chooses a new item in a list or changes
the text in text box.

In these cases, without postback your code has no way to run.

ASP.NET handles this by giving vou two options:

1.

Wait until the next postback to react to the event. Like to
react to SelectedIndexChanged event in a list, when user
selects an item in a list, nothing happens immediately. But if
user clicks a button to postback the page, two events fire:
ButtonClick followed by ListBox.SelectedIndexChanged.

2. To use the automatic postback feature to force a control to
post back the page immediately when it detects a specific user
action. In this, when the user clicks a new item in the list, the
page 1s posted back, your code executes, and a new version of the
page is returned.

Event Web Controls That Provide It Always
Posts Back

Click Button, ImageButton True
TextBox (fires only after the user

TextChanged changes the focus to another False
control)

CheckedChanged CheckBox, RadioButton False

SelectedIndexChanged OprIown dss iE L, False

CheckBoxList, RadioButtonList

Table 5.9: Web Control Events

If you want to capture a change event (such as TextChanged,
CheckedChanged, or SelectedIndexChanged) immediately,you need
to set the control’s AutoPostBack property to true.

Depending on the result you want, you could have a page that
has some controls that post back automatically and others that
don’t.

Page Request: The cycle begins
when a user requests an ASP.NET
page by entering its URL or PN TSSUe
interacting with a control that
triggers a postback.

Start and Initialization: The
page initialization process takes
place, including creating TR
controls and loading ViewState. Rendering n— Initialization
This step occurs on every page
request.

Page_Init: Developers can utilize Soaiback
this event to initialize controls Event Handling
and set their initial properties.
However, ViewState is not yet
fully loaded at this point.

4.Page_Load: Code within this event is executed, often involving
data loading, validation, and populating controls. It's a
critical point to distinguish between the initial load and
postbacks.

5. Control Events: If any controls triggered postbacks, their
associated event handlers are executed. This 1includes actions
like button clicks or selection changes.

6. PreRender: The Page.PreRender event fires, and the page is
rendered (transformed from a set of objects to an HTML page).

7. Unload: After rendering, cleanup tasks and resource release
are performed. This is the last opportunity to interact with
controls and the page. The Page_Unload is final event in the
cycle, used for cleanup and finalization. The page instance 1s
released after this point.

e State management in ASP.NET
refers to the mechanisms and
techniques used to maintain
the state (data and values) of
a web application across
multiple requests and page
transitions.

e ASP.NET offers various ways to

manage state, allowing
developers to preserve user
input, control states, and
other relevant data between
different interactions with
the application.

ViewState is a important client side state management
technique.

ViewState 1is used to store user data on page at the time of
post back of web page.

ViewState does not hold the controls, it holds the values of
controls.

It does not restore the value to control after page post back.
ViewState can hold the value on single web page, if we go to
other page using response.redirect then ViewState will be
null.

When we require value of page variable to be maintained during
page postback, we can use View state to store those value.
“EnableViewState” property is used for both Page Level and
Server contact level to manage the view state.

<asp:TextBox runat="server" ID="NameField" />
<asp:Button runat="server" ID="SubmitForm" OnClick="SubmitForm_Click" Text="Submit" />
<asp:Label runat="server" ID="NameLabel" />

protected void Page_Load(object sender, EventArgs e)

{
if (vViewState["NameOfUser"] != null)
NameLabel.Text = ViewState["NameOfUser"].ToString();
else
NameLabel.Text = "Not set yet...";
}

protected void SubmitForm_Click(object sender, EventArgs e)

{

ViewState["NameOfUser"] = NameField.Text;
NamelLabel.Text = NameField.Text;

Limitation of view state

1. It increases the page size

Can impact performance

Can potentially expose data in the rendered HTML.

Viewstate can be used only with single page.

It is storing the information of an hidden field, so it can be
seen 1n source code 1in browser, hence it is not secure way.

o b WODN

A common approach is to pass information by using a query
string in the URL.

This approach is commonly found in search engines.

For example, if you perform a search on the Google website,
you’ll be redirected to a new URL that incorporates your
search parameters

There is a limitation of length of query string. So query
string cannot be used to send very large data.

Query string are visible to the user, so it should not be used
to send sensitive information such as username, password
without encryption.

Request object of QueryString property is used to retrieve the
query string.

Usage and Structure:

e The query string 1is a part of the URL that comes after the
question mark (7).

e It's composed of one or more key-value pairs separated by
ampersands (&).

e Query strings are commonly used to transmit data from one page
to another.

Example:
http://www.google.ca/search?q=organic+gardening

e The query string is the portion of the URL after the question
mark.

e In this case, it defines a single variable named g, which
contains the string organic+gardening.

QUERY STRING

« Advantages:
o Simple and easy to use.
o Works across different platforms and technologies.
« Disadvantages:
o Limited data capacity due to URL length restrictions.

o Exposes data in the URL, potentially compromising sensitive information.

// ' Forward the user to the information page,

// 'with the query string data.

string url = "QueryStringRecipient.aspx?";

url += "lItem=" + Istltems.SelectedItem.Text + "&"; & SenderPage
url += "Mode=" + chkDetails.Checked.ToString():

Response.Redirect(url);

protected void Page Load(Object sender, EventArgs ¢)
d

ReceiverPage “ IblInfo.Text = "Item: " + Request.QueryString["Item"];
IblInfo.Text+="Show Full Record: ";

IblInfo.Text += Request.QueryString["Mode"];

Cookies are small pieces of data that are stored on the
client's machine to retain information between requests.

They are often used to store user preferences, login sessions,
and other stateful information.

In ASP.NET, cookies can be managed using the HttpCookie class.
Cookies have limitations, including a size limit and the fact
that they are stored on the client's machine, making them less
secure for sensitive information.

COOKIES

1. Create a webpage with language selection options (Default.aspx):

<!DOCTYPE html>
<html xmlns="<http://www.w3.0rg/1999/xhtml>">
<head runat="server">

<title>Language Preference</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<asp:DropDownList ID="ddlLanguages" runat="server'">
<asp:ListItem Text="English" Value="en"></asp:ListItem>
<asp:ListItem Text="French" Value="fr"></asp:ListItem>
<asp:ListItem Text="Spanish" Value="es"></asp:ListItem>
</asp:DropDownList>
<asp:Button ID="btnSetLanguage" runat="server" Text="Set Language" OnClick="btnSetLanguage_Click" />
</div>
</form>
</body>

</html>

1. Add code-behind logic to set and read cookies (Default.aspx.cs):

COOKIES

using System;

public partial class Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
if (Request.Cookies["LanguagePreference"] != null)
{
string language = Request.Cookies['"LanguagePreference"].Value;
ddlLanguages.Selectedvalue = language;
}
}
3
protected void btnSetLanguage_Click(object sender, EventArgs e)
{
HttpCookie cookie = new HttpCookie('"LanguagePreference");
cookie.Value = ddlLanguages.SelectedValue;
cookie.Expires = DateTime.Now.AddDays(30); // Cookie will expire in 30 days
Response.Cookies.Add(cookie);
3

Session state is a server-side state management technique 1n
ASP.NET that allows you to store and retrieve user-specific
data across multiple requests.

It provides a way to maintain state information for individual
users during their entire session on a website.

This is particularly useful for scenarios where you need to
store user specific data like shopping cart contents, user
preferences, or login sessions.

Session state uses a unique session identifier (usually stored
in a cookie or as part of the URL) to associate a user with
their session data on the server.

The data 1s stored on the server's memory, a database, or an
external state server, depending on the session state mode you
choose.

SESSTON STATE

How It Works:

1. Session Tracking: When a user starts using your website, ASP.NET gives them a unique session ID. It's
like a special number that's unique to them. This ID can be stored as a cookie in their web browser or
managed in the URL.

2. Using Session State: Think of session state like a locker on the server. You can put things inside (like
data) and take them out later. You can use the session oObject to do this. For example, you can put some
data like a user's name in the session like this:

Session["UserName"] = "John";

And later, you can get it back:

string userName = (string)Session["UserName"];

SESSTON STATE

3. Benefits:

« Remembering Data: You can remember data for a user across different pages. For instance, you can
remember their preferences or shopping cart items.

« Unique to Users: Each user gets their own session, so the data you put in there is separate for each
user.

e Security: Since session data stays on the server, it's more secure than keeping it on the user's side.

Limitations:
« Memory Usage: If you put too much stuff in session state, it can use up a lot of server memory.

« Expiry: Session data doesn't last forever. It has a timeout, so if a user doesn't do anything on your website
for a while, their session might expire and they lose the data you stored.

SESSTON STATE

These are properties and methods provided by ASP.NET's
HttpSessionState class, which is used for managing session state 1in
web applications. They allow you to interact with the session data
stored on the server for each user

1. Count: Gives you the number of items currently stored in the session for a specific user's session.
2. IsCookieless: Tells you whether the session is being tracked using cookies or modified URLS.

3. IsNewSession: Indicates whether the session was newly created for the current request. If there's no
session data, a new session is created.

4. Keys: Provides a collection of keys (names) used to access session items.

SESSTON STATE

5. Mode: Specifies how session state information is stored, based on web.config settings.

6. SessionID: Unique identifier for the current user's session.

7. Timeout: Determines how long the session will last without any activity before it's abandoned.
8. Abandon(): Ends the current session and releases associated resources.

9. Clear(): Removes all session items but doesn't end the session itself.

protected void login_Click(object sender, EventArgs e)

{

if (password.Text=="qwe123")

{
ErovideBoHawing Details // Storing email to Session variable
Email Session["email"] = email.Text;
Password J

" Login | // Checking Session variable is not empty
if (Session["email"] != null)
{
// Displaying stored email

Label3.Text = "This email is stored to the session.”

Label4.Text = Session["email"].ToString();

You configure session state through the web.config file for your
current application.

<configuration>
<system.web>

<sessionState
cookieless="UseCookies"
cookieName="ASP.NET_SessionId"
regenerateExpiredSessionId="false"
timeout="20"
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
stateNetworkTimeout="10"
sqlConnectionString="data source=127.0.0.1;Integrated Security=SSPI"
sqlCommandTimeout="30"
allowCustomSglDatabase="false"
customProvider=""
compressionEnabled="false"

/>

</system.web>

</configuration>

APPLICATION STATE

1. Application state is a concept in ASP.NET that allows you to
store data that is shared across all users and sessions of an
application.

2. Unlike session state which is user-specific, application state
is shared among all users and is accessible throughout the
entire application.

3. Example:

// Storing a value in application state
Application["Totalvisitors"] = 0;

// Incrementing the value on each page visit

int currentVisitors = (int)Application["TotalVvisitors"];
currentvVisitors++;

Application["Totalvisitors"] = currentVisitors;

// Displaying the total number of visitors
LabelTotalvisitors.Text = "Total Visitors: " + Application["Totalvisitors"].ToString();

Validation controls in ASP.NET
are used to validate user
input on web forms to ensure
that the data entered by users
meets specific criteria or
formats.

Validation controls can be
applied to various types of

user input controls such as
textboxes, dropdown lists,
checkboxes, and more.

2 types of validations:

Client side validation
Server side validation

e Server Side Validation

Server-side validation is the process of validating user 1input and
data on the server after it has been submitted by the user. Unlike
client-side validation, which occurs in the user's browser using
JavaScript, server-side validation takes place on the web server
after the data has been posted back from the client.

e Client Side Validation

Client-side validation is the process of validating user 1input and
data directly within the user's web browser using client-side
scripting languages like JavaScript. This type of validation occurs
before the data is submitted to the server, providing immediate
feedback to users and reducing the need for round-trips to the
server for validation.

The BaseValidator
class is the
foundation for
validation controls
in ASP.NET.

Some key properties
of the
BaseValidator class

Members
ControlToValidate
Display
EnableClientScript
Enabled
ErrorMessage
Text
IsValid

SetFocusOnError

ValidationGroup

Validate()

Description
Indicates the input control to validate.
Indicates how the error message is shown.
Indicates whether client side validation will take.
Enables or disables the validator.
Indicates error string.
Error text to be shown if validation fails.
Indicates whether the value of the control is valid.

It indicates whether in case of an invalid control, the
focus should switch to the related input control.

The logical group of multiple validators, where this
control belongs.

This method revalidates the control and updates the
IsValid property.

Here are some common validation controls and their purposes:

1. RequiredFieldValidator: Ensures that a user provides input in a specific control, preventing the
submission of empty or blank values.

<asp:RequiredFieldvValidator ID="rfl" runat="server" ErrorMessage="RequiredFieldValidator" ControlToValidate="1bl1">
</asp:RequiredFieldValidator>

2. RegularExpressionValidator: Validates input against a specified regular expression pattern. Useful for
enforcing specific formats like email addresses, phone numbers, or zip codes.

<asp:RegularExpressionValidator ID="rel" runat="server" ErrorMessage="RegularExpressionValidator"
ControlToValidate="1b1l" ValidationExpression=".+@.+">
</asp:RegularExpressionValidator>

3. RangeValidator: Checks whether the input falls within a specified range of values (numeric or date range).

<asp:RangeValidator ID="rv1" runat="server" ErrorMessage="RangeValidator" ControlToValidate="txtl"
MaximumValue="1" MinimumValue="10">

</asp:RangeValidator>

4. CompareValidator: Compares the input in one control to the input in another control or a constant value.
Useful for password confirmation or checking if two fields have the same value.

<asp:CompareValidator ID="cv1l" runat="server" ErrorMessage="CompareValidator" ControlTeValidate="txtpass"
ValueToCompare="txtconf_pass">

</asp:CompareValidator>

5. CustomValidator: Allows you to define custom validation logic by specifying a client-side and server-side
validation function.

<asp:CustomValidator ID="cust" runat="server" ErrorMessage="CustomValidator" ControlToValidate="txt"
OnServerValidate="cust_ServerValidate">
</asp:CustomValidator>

6. ValidationSummary: Provides a summary of all validation errors on the page. It's often placed near the top
of the form to give users an overview of any issues.

<asp:ValidationSummary ID="vsl" runat="server" ValidationGroup="txtrange" />

(I —

MANUAL VALIDATION

Manual validation in ASP.NET refers to the process of
validating user input without relying on built-in
validation controls.

Instead of using validation controls like
RequiredFieldValidator, RegularExpressionValidator , etc.,
you perform validation using code-behind logic.

This gives you more control over the validation process
and allows you to customize the validation logic as
needed.

<asp:TextBox ID="txtNumber" runat="server" />

<asp:Button ID="btnvalidate" runat="server" Text="Validate" OnClick="btnValidate_Click" />

<asp:Label ID="1blResult" runat="server" />

protected void btnvalidate_Click(object sender, EventArgs e)

{

string input = txtNumber.Text;
if (IsvalidNumber (input))
{
1blResult.Text = "valid number entered!";
1lblResult.ForeColor = System.Drawing.Color.Green;
3
else
{
1lblResult.Text = "Invalid number format!";
1lblResult.ForeColor = System.Drawing.Color.Red;
3

3

private bool IsvValidNumber(string input)

{

int number;
return int.TryParse(input, out number);

VALIDATION WITH REGULAR EXPRESSIONS

Validation with regular expressions in ASP.NET allows you
to define complex patterns that user input must match.

Regular expression validation 1is useful when you need to
ensure that input follows a specific format, such as email
addresses, phone numbers, passwords, and more.

A phone number must be a set number of digits, an e-mail
address must include exactly one @ character (with text on
either side)

ASP.NET provides the RegularExpressionValidator control
for this purpose.

Character

Description

*

Zero or more occurrences of the previous character or
subexpression. For example, 7*8 matches 7778 or just 8.

One or more occurrences of the previous character or
subexpression. For example, 7+8 matches 7778 but not 8.

()

Groups a subexpression that will be treated as a single
element. For example, (78)+ matches 78 and 787878.

{m,n}

The previous character (or subexpression) can occur from

m to n times. For example, A{1,3} matches A, AA, or
AAA.

Either of two matches. For example, 8|6 matches 8 or 6

[]

Matches one character in a range of valid characters. For
example, [A-C] matches A, B, or C.

"] Matches one character in a range of valid characters. For
example, [A-C] matches A, B, or C.

Any character except a newline. For example, .here
matches where and there.

\s Any whitespace character (such as a tab or space).

\S Any nonwhitespace character

\d Any digit character

\D Any character that 1sn’t a digit.

\w Any “word” character (letter, number, or underscore).
\W Any character that i1sn’t a “word” character (letter,

number, or underscore).

Commonly Used Regular Expressions

Content Regular Expression Description

E-mail address* | \S+@\S+\.\S+ Check for an at (@) sign and dot
(.) and allow nonwhitespace
characters only.

Password \w+ Any sequence of one or more
word characters (letter, space, or
underscore).

Specific-length \w{4,10} A password that must be at least

password four characters long but no

longer than ten characters.

Advanced [a-zA-Z]\w {3.9} As with the specific-length
password password, this regular
expression will allow four to ten
total characters. The twist is that
the first character must fall in
the range of a-z or A-Z
Another [a-zA-Z]\wH\d+\w* This password starts with a letter
advanced character, followed by zero or
password more word characters, one or

more digits, and then zero or
more word characters

Limited-length
field

\S{4,10}

Like the password example, this
allows four to ten characters, but
it allows special characters

US Social \d{3}-\d{2}-\d{4} A sequence of three, two, and
Security number then four digits, with each group
separated by a dash. You could
use a similar pattern when
requiring a phone number.

Rich controls are web controls that
model complex user interface elements.

Provides object model that has complex
HTML representation and also client-side
JavaScript

A typical rich control can be programmed
as a single object but renders itself
using a complex sequence of HTML
elements.

Rich controls can also react to user
actions (such as a mouse click on a
specific region of the control) and
raise more-meaningful events that your
code can respond to on the web server.

Rich controls, also known as Web server
controls or ASP.NET controls

CALENDAR CONTROL

The Calendar control in ASP.NET 1dis a rich control that

provides an interactive calendar 1interface for selecting
dates.

The Calendar control is part of the
System.Web.UI.WebControls namespace and offers various
features for date selection and customization.

To use the Calendar control, you can simply add i1t to your
ASP.NET page using the <asp:Calendar> tag.

For example:

<asp:Calendar ID="Calendarl" runat="server'"></asp:Calendar>

Property
DayHeaderStyle
DayStyle
NextPrevStyle
OtherMonthDayStyle
SelectedDayStyle |
SelectorStyle
TitleStyle
TodayDayStyle
WeekendDayStyle

Description

The style for the section of the Calendar that displays the days of the week (as column headers).
The default style for the dates in the current month.

The style for the navigation controls in the title section that move from month to month.

The style for the dates that aren't in the currently displayed month.

The style for the selected dates on the calendar.

The style for the week and month date selection controls.

The style for the title section.

The style for the date designated as today (TodaysDate property of Calendar control).

The style for dates that fall on the weekend.

Property
Date
IsWeekend
IsToday
IsOtherMonth
IsSelectable

Description

The DateTime object representing this date.

True if this date falls on a Saturday or Sunday.

True if this value matches Calendar.TodaysDate property.
True if this date isn't in the current month but displayed.

Configure whether the user can select this day.

ADROTATOR CONTROL

The AdRotator control in ASP.NET 1is used for displaying a
sequence of advertisements (ads) on a webpage.

It is commonly used to rotate different banner ads,
images, or HTML content in a cyclic manner.

The control makes it easier to manage and display
advertisements on a website without manually updating the
content each time.

Here's how the AdRotator control works:

<asp:AdRotator ID="adRotator" runat="server"
AdvertisementFile="~/App_Data/Ads.xml"
Target="_blank" webl.aspx
width="300"
Height="200" />

In this example, the AdvertisementFile property specifies the XML file
containing the ad information. The Target property indicates that
clicking on an ad will open the link in a new browser tab. The Width and
Height properties set the dimensions of the displayed ad.

Target Description
_blank The link opens a new unframed window.
_parent The link opens 1n the parent of the current frame.
_self The link opens 1n the current frame.
_top The hnk opens in the topmost frame of the current
window

<Advertisements>
<Ad>
<ImageUr 1>~/Images/adl. jpg</ImageUr1>
<NavigateUr1l><https://www.example.com/adl></NavigateUr 1>
<AlternateText>Ad 1</AlternateText>

</Ad> Ads . xml
<Ad>
<ImageUr 1>~/Images/ad2. jpg</ImageUr 1>
<NavigateUr1l><https://www.example.com/ad2></NavigateUr 1>
<AlternateText>Ad 2</AlternateText>
</Ad>
</Advertisements>

In this XML, each <Ad> element represents an advertisement with
properties such as ImageUrl , NavigateUrl , and AlternateText

The AdRotator control helps streamline the process of displaying
rotating ads on a webpage, making it easier to manage and update
advertisement content without modifying the HTML code.

ImageUrl: This property specifies the image that will be displayed as an advertisement. It can be either
a relative link to a local file (such as "~/Images/adl.jpg") or a fully qualified Internet URL.

NavigateUrl: This property defines the URL to which the user will be redirected if they click on the
advertisement. Similar to the mageur1, this can be a relative or fully qualified URL.

AlternateText: The text provided in this property will be displayed if the image cannot be loaded, acting
as an alternative description. It is also used as a tooltip in some modern browsers when the user
hovers over the image.

Impressions: This numeric property determines the frequency at which an advertisement will appear
relative to other ads. For example, if you set an advertisement's Impressions to 10 and another ad's
Impressions to 5, the first ad will be shown twice as often as the second on average.

Keyword: This property allows you to assign a keyword to advertisements. It can be used for filtering
purposes, allowing you to group and display ads based on certain keywords. For instance, you might
have different sets of ads for categories like "Retail," "Technology," etc.

MULTIVIEW CONTROL

The MultiView control in ASP.NET provides a way to display
different sets of content in separate views and allows
users to switch between these views without requiring
separate postbacks or page reloads.

It's commonly used to create tabbed interfaces or
step-by-step wizards where each step 1s presented in a
different view

Syntax <asp:MultiView ID="MultiView 1" runat="server">
<asp:View ID="View!” runat="server’>...</asp:View>
<asp:View ID="View2” runat=""server >...</asp:View>
<asp:View ID="View3” runat=""server’>...</asp:View>

</asp:MultiView=>

Key Features of the wuttiview Control:

Views: The wuttiview control contains a collection of view controls. Each view represents a different
content segment that can be displayed.

Active View: Only one view can be active at a time. The content of the active view is shown, while the
content of other views remains hidden.

Switching Views: The active view can be changed programmatically in response to user actions, such
as clicking buttons or links. This allows you to create interactive user interfaces.

User-Friendly: The witiview control provides a smooth and user-friendly way to present different
sections of content without causing full page reloads.

<asp:Multiview ID="multiView" runat="server">
<asp:View ID="viewl" runat="server">
<!-- Content for View 1 -->
<h2>Welcome to View 1</h2>
</asp:View>
<asp:View ID="view2" runat="server">
<!-- Content for View 2 -->
<h2>Welcome to View 2</h2>
<p>This is some content in View 2.</p>
</asp:View>
</asp:Multiview>

<asp:Button ID="btnSwitchToViewl" runat="server" Text="Switch to View 1" OnClick="btnSwitchToViewl_Click" />
<asp:Button ID="btnSwitchToView2" runat="server" Text="Switch to View 2" OnClick="btnSwitchToView2 Click" />

In this example, the MultiView control contains two views.
The user can switch between these views by clicking the
buttons. The code-behind sets the initial view and handles
the button clicks to change the active view accordingly

Code-Behind (C#):

protected void Page_Load(object sender, EventArgs e)

{
if (!IsPostBack)

{

// Set initial view
multivView.ActiveViewIndex = 0; // Show View 1 by default

protected void btnSwitchToViewl_Click(object sender, EventArgs e)

4

multiView.ActiveViewIndex = 0; // Switch to View 1

protected void btnSwitchToView2_Click(object sender, EventArgs e)

{

multiView.ActiveViewIndex = 1; // Switch to View 2

The MultiView control allows you to switch between
different views on a page. To control this switching, you
can use command names with buttons. Here are the command
names and their actions:

 PrevView: Moves to the previous view.
 NextView: Moves to the next view.

 SwitchViewBylID: Moves to a specific view based on its ID.

 SwitchViewBylIndex: Moves to a specific view based on its index.

1.

MASTERPAGES TN ASPNET

What are MasterPages?

MasterPages in ASP.NET serve as templates defining the
common structure and layout of a web application.

They provide uniformity across multiple pages while
accommodating varied content.

Master pages have a different file extension (.master
instead of .aspx) and they can’t be viewed directly by a
browser.

Instead, master pages must be used by other pages, which
are known as content pages. Essentially, the master page
defines the page structure and the common ingredients.

A single master page might define the layout for the
entire site.

MASTERPAGES TN ASPNET

2. Benefits of MasterPages:

1. Consistency: Maintain a consistent look and feel
throughout the application.

2. Ease of Maintenance: Changes in the MasterPage propagate
to all associated pages.

3. Separation of Concerns: Designers and developers work
independently on layout and content.

4. Navigation: Shared elements like headers and menus can be
placed in the MasterPage.

How to Use MasterPages:
Step 1: Create a MasterPage

1. Add a new Master Page to your project.

2. Design the layout with HTML and controls, using ContentPlaceHolder to indicate dynamic content
areas.

Example- SiteTemplate.master .

<% Master Lanquage="C#" CodeFile="SiteTemplate.master.cs" Inherits="SiteTemplate™ %
<htal>
<head runat="server">
<title>My Master Page</title>
</head>
<body>
<div id="header">Header Content</div>
<asp:ContentPlacedolder ID="MainContent™ runat="server"></asp:ContentPlacedolder>
<div id="footer">Footer Content</div>
</body>
</htal>

How to Use MasterPages:

Step 2: Create a Content Page
1. Add a new Web Form (Content Page).

2. Set nasrerrageriie in the Page directive to link to the MasterPage.
Example - ContentPape.aspx .

<%f Page Language="Cs" MasterPagefFile="-/SiteTemplate.master" Inherits="ContentPage” %>
<asp:Content ID="Content1l” ContentPlacedolderID="MainContent" runat="server">
<hi>Welcome to My Content Page</hi>
<p>This is a sample content.</p>
</asp:Content>

When you create a master page, you’re building
something that looks much like an ordinary ASP.NET web
form.

The key difference is that, although web forms start
with the Page directive, a master page starts with a
Master directive that specifies the same information.
The ContentPlaceHolder 1is the portion of the master
page that a content page can change. Or, to look at it
another way, everything else that’s set in the master
page 1s unchangeable in a content page.

When you create a content page, ASP.NET links your page
to the master page by adding an attribute to the Page
directive.

This attribute, named MasterPageFile, indicates the
associated master page.

ASP.NET provides various
site-navigation features
which gives a consistent
way for visitors to
navigate the

site.

These features are

Site Maps
URL Mapping and Routing
SiteMapPath.

SITEMAPS

Site maps are used to define a website's navigation
structure, making it easier for users to navigate
between pages.

Components of ASP.NET Navigation

1. Site Map Definition: Site maps define the organization of
web pages using XML elements.

2. Data Source Control (SiteMapDataSource): This control
reads the site map file and converts it 1into

an object model.

3. Navigation Controls: These controls utilize the site map
information to create navigation menus,breadcrumb links, and
more

SITEMAPS

Creating Site Maps - Key Rules

Rule 1: Site Maps Begin with the <siteMap> Element
e Every Web.sitemap file starts with the <siteMap> element.
e The xmlns attribute is essential for ASP.NET recognition.

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

Rule 2: Each Page Is Represented by a <siteMapNode> Element
e Pages are represented using the element, containing
attributes for title, description, and URL

<siteMapNode url="~/Home.aspx" title="Home" description="Home" />

Creating Site Maps - Key Rules

Home
~/Default.aspx

Rule 3: A <siteMapNode> Element Can
Contain Other <siteMapNode> Elements
e Nodes can be nested to create page || Products
. . . ~/Products.aspx
groups and subgroups within the site
map.

Hardware
~/Hardware.aspx

<siteMapNode url="~/Home.aspx" title="Home" description="Home">
<siteMapNode url="~/Products.aspx" title="Products" description="Products" />
<siteMapNode url="~/Hardware.aspx" title="Hardware" description="Hardware" />
</siteMapNode>

Creating Site Maps - Key Rules

Rule 4: Every Site Map Begins with a Single <siteMapNode>

e A site map must have a single root <siteMapNode> that
contains all other nodes.

e That means the following is not a valid site map, because

it contains two top-level nodes:

<siteMapNode url="~/Products.aspx" title="Products" description="Products" />
<siteMapNode url="~/Hardware.aspx" title="Hardware" description="Hardware" />

e The following site map is valid, because it has a single
top-level node (Home), which contains two more nodes:

<siteMapNode url="~/Home.aspx" title="Home" description="Home">
<siteMapNode url="~/Products.aspx" title="Products" description="Products" />

<siteMapNode url="~/Hardware.aspx" title="Hardware" description="Hardware" />
</siteMapNode>

Creating Site Maps - Key Rules

Rule 5: Duplicate URLs Are Not Allowed

e Each site map node must have a unique URL.

e Similar URLs with different query string arguments are
allowed.

e These two nodes are acceptable, even though they lead to
the same page (products.aspx), because the two URLs have
different query string arguments at the end.

<siteMapNode url="" title="Products" description="Products">
<siteMapNode url="~/Products.aspx?stock=1" title="In Stock" description="Products that are available" />
<siteMapNode url="~/Products.aspx?stock=" title="Not In Stock" description="Products that are on order" />

</siteMapNode>

URL MAPPING

URL mapping in ASP.NET allows you to associate multiple URLs
with the same page, offering a way to simplify and enhance
the user experience. Here's a breakdown of how URL mapping

works:

Purpose of URL Mapping:
e Use multiple URLs to lead to a single page.
e Provide shorter, user-friendly, or meaningful URLs while

maintaining a single-page logic.

URL MAPPING

Concept of URL Mapping:
e Map a request URL to a different URL using rules defined

in the web.config file.
e Mapping rules are applied before any other processing

occurs.
e Requested URLs must use a file type extension that's

mapped to ASP.NET for the mapping to work

URL Mapping Configuration:
e URL mappings are defined in the <urlMappings> section of

the web.config file.
e Each mapping includes the original request URL and the
mapped destination URL.

URL MAPPING

<configuration>
<system.web>

<ur lMappings enabled="true">
<add url="-~/category.aspx" mappedUrl="~/default.aspx?category=default" />

<add url="-/software.aspx" mappedUrl="~/default.aspx?category=software" />

</ur IMappings>
<!-- Other configuration settings -->

</system.web>
</configuration>

Matching and Redirection:
e For a match to occur, the submitted browser URL must

closely match the URL specified in the web.config file.
e Redirection takes place 1n a way similar to
Server.Transfer () , without a round-trip.

URL MAPPING
e The URL 1in the browser will still show the original
request URL, not the redirected page's URL.

Benefits:

e Simplifies URLs and makes them more user-friendly.

e Enables you to organize and structure URLs logically.
e Provides a cleaner and consistent user experience.

URL ROUTING

e Unlike URL mapping, URL routing doesn’t take place 1in the
web.config file. Instead, it’s implemented using code.

1. Purpose of URL Routing:

e Create user-friendly and search engine optimized URLs.

e Organize URLs based on a logical and hierarchical structure.

e Improve the overall user experience and navigation.

2. Implementing URL Routing:

e URL routing is commonly set up i1n the Application_Start event
of the Global.asax file.

e The RouteTable.Routes collection 1is used to define routes
using the MapPageRoute method.

e A route consists of a unique name, a URL pattern with
placeholders, and the target page or handler.

protected void Application_Start(object sender, EventArgs e)
{
RouteTable.Routes.MapPageRoute("product-details",
"product/{productID}", "~/productInfo.aspx");

RouteTable.Routes.MapPageRoute("products-in-category",
"products/category/{categoryID}", "-~/products.aspx");

}

In this example, two routes are defined: one for displaying
product details and another for listing products in a specific
category

Benefits of URL Routing:

Improved SEO: Search engines favor descriptive URLs,
resulting in better search engine rankings.
User-Friendly: Users find it easier to understand and
remember meaningful URLs.

Flexibility: Dynamic placeholders in URLs allow for
parameterized pages.

Centralized Configuration: Routes can be managed 1in one
place, improving maintenance.

STTEMAPPATH CONTROL

e The SiteMapPath control is an ASP.NET control that displays a
hierarchical representation of a sitemap.

e The sitemap is a collection of pages that are organized 1in a
tree-1like structure. The SiteMapPath control

e can be used to display the sitemap in a variety of ways,
including as a list, a table, or a navigation bar.

e The SiteMapPath control is a server control, which means that
it is processed on the server before it is rendered to the
client. This allows the SiteMapPath control to access the
sitemap and dynamically generate the navigation links.

The SiteMapPath control has a number of properties that can
be used to customize its appearance and behavior. These
properties include:

SiteMapDataSource: This property specifies the data source that is used to populate the sitemap.
RootNodelD: This property specifies the ID of the root node in the sitemap.

PathSeparator: This property specifies the character that is used to separate the nodes in the sitemap
path.

CurrentNodeStyle: This property specifies the style that is used to render the current node in the
sitemap path.

OtherNodeStyle: This property specifies the style that is used to render the other nodes in the sitemap
path.

The SiteMapPath control can be used to display the sitemap 1in
a variety of ways. Here are a few examples:

As a list: The SiteMapPath control can be used to display the
sitemap as a list of links. This can be done by setting the
PathSeparator property to a space character.

As a table: The SiteMapPath control can be used to display
the sitemap as a table. This can be done by setting the
PathSeparator property to a table break character.

As a navigation bar: The SiteMapPath control can be used to
display the sitemap as a navigation bar. This can be done by
setting the CurrentNodeStyle property to a style that
highlights the current node and the OtherNodeStyle property
to a style that i1s used to render the other nodes.

<asp:SiteMapPath ID="SiteMapPathl" runat="server" RenderMode="Tree">
<SiteMapDataSource ID="SiteMapDataSourcel" runat="server">
<SiteMapFile Path="-~/sitemap.xml" />
</SiteMapDataSource>
<PathSeparator> </PathSeparator>
<CurrentNodeStyle>
<Style BackColor="Blue" ForeColor="white" />
</CurrentNodeStyle>
<OtherNodeStyle>
<Style BackColor="Gray" ForeColor="Black" />
</0therNodeStyle>
</asp:SiteMapPath>

TREEVIEW CONTROL

The TreeView has a slew of
properties that let you
change how it’s displayed on
the page. One of the most
important properties 1s
ImageSet, which lets you
choose a predefined set of
node 1icons.

The TreeView offers 16
possible ImageSet values,
which are represented by the

TreeViewImageSet enumeration.

Untitled Page

C O localhost

= 8 tome

= (&) Information
¥ About s
¥ Investing

= 8 Products
¥ RevoStock

¥ Revodnalyze

You are currently on the default.aspx

page (home).

<asp:TreeView ID="TreeViewl" runat="server" ImageSet="Faq">
</asp:TreeView>

Property

Description

MaxDataBindDepth

Determines how many levels the TreeView will
show. By default, MaxDataBindDepth is -1, and
you'll see the entire tree.

ExpandDepth

Lets you specify how many levels of nodes will be
visible at first. If you use 0, the TreeView begins
completely closed.

Nodelndent

Sets the number of pixels between each level of
nodes in the TreeView. Set this to 0 to create a
nonindented TreeView, which saves space.

ImageSet

Lets you use a predefined collection of node
images for collapsed, expanded, and
nonexpandable nodes.

ShowLines

Adds lines that connect every node when set to
true.

NodeWrap

Lets a node text-wrap over more than one line
when set to true.

ShowCheckBoxes

Shows a check box next to every node when set to
true. This isn’t terribly useful for site maps, but it
is useful with other types of trees.

TreeNodeStyle-Added Properties

Property Description
ImageUrl The URL for the image shown next to the node.
NodeSpacing The space (in pixels) between the current node and

the node above and below.

VerticalPadding The space (in pixels) between the top and bottom
of the node text and border around the text.

HorizontalPadding |The space (in pixels) between the left and right of
the node text and border around the text.

ChildNodesPadding | The space (in pixels) between the last child node of
an expanded parent node and the following node.

MENU CONTROL

e The Menu control in ASP.NET 1is used to create hierarchical
navigation menus. It allows you to define menu items and

submenus in a structured manner. Here are some key points

about the Menu control:

Untitled Page

C © localhost

You are currently on the default.aspx page
(home).

Untitled Page

& ocalhost

Home » Information »

Products P RevoStock

Y nvestment software for vielg 71: Jasp». page

[Frovmmeyr

1. Binding to Data Source:
You can bind the Menu control to a data source using the patasourcern property. This allows you to
populate the menu dynamically from a data source such as a sitemap.

2. Menultem Objects:
Alternatively, you can manually add menu items using wenuiten Objects. Each wenuiten can have
submenus created by adding child wenuiten oObjects.

3. Rendering:
The Menu control renders as a list of links. The root-level menu items are displayed horizontally, and
submenus are displayed as fly-out menus that appear on hovering over a menu item.

4. Styling:
The Menu control provides various style properties to control the appearance of different aspects:

staticMenustyle - Sets the appearance of the overall menu box.
staticMenultenstyle : Sets the appearance of individual menu items.
staticselectedstyle © Sets the appearance of the selected menu item.

staticHoverstyle : Sets the appearance of the menu item that the user is hovering over.

5. Orientation:
The orientation property allows you to control whether the menu is displayed horizontally or vertically.

6. Templates:
The Menu control supports templates that allow you to customize the rendering of menu items. This is
useful when you need more control over the HTML markup and styling of menu items.

7. Hierarchical Navigation:
The Menu control supports hierarchical navigation, allowing you to create multi-level menus with

submenus.

<asp:Menu ID="Menul" runat="server" DataSourceID="SiteMapDataSourcel" Orientation="Horizontal">
</asp:Menu>

<asp:SiteMapDataSource ID="SiteMapDataSourcel" runat="server" ShowStartingNode="false" />

In this example, the Menu control is bound to a sitemap data source using the
SiteMapDataSource control. The Orientation property is set to "Horizontal" to display the
root-level menu items horizontally.

ADO.NET

(ActiveX Data Object .NET)

UNIT 3

e Database access technology
developed by Microsoft as part of
the .NET framework known as
ActiveX Data Object or ADO.NET.

ADO.NET consists of managed .
classes that allow .NET W h at I S

applications to connect to data

sources (relational databases), A D O?

execute commands, and manage

disconnected data.
ADO is automatically installed with
Microsoft IS

e ADO.NET uses a multilayered architecture that revolves around a few key
concepts, such as Connection, Command, and DataSet objects.

e In many past database technologies, such as classic ADO, programmers use a
generic set of objects no matter what the underlying data source is.

e [or example, if you want to retrieve a record from an Oracle database using ADO
code, we use the same Connection class you would use to tackle the task with
SQL Server.

e ADO.NET revolves around Data Providers and is built upon the System.Data
namespace.

e This namespace contains classes shared across different data providers, ensuring

consistency in data access

DATA PROVIDER MODEL / ADO.NET ARCHITECTURE

.NET Framework Data Provider

Connection

DataAdapter

Transaction

Select Command

Insert Command

Command

Parameters

Update Command

Delete Command

DataReader

Data Set

Data Table Collection

Data Table

Data Row Collection

Data Column
Collection

Constraint Collection

x

=

Database

Data Relation Collection

A

v
XML

ADO.NET Data Providers:
e A data provider is a set of ADO.NET classes that allows you to access a specific
database, execute SQL commands, and retrieve data.
e A data provider is a bridge between your application and a data source. The
classes that make up a data provider include the following:
1. Connection: You use this object to establish a connection to a data source.
2. Command: You use this object to execute SQL commands and stored procedures.
3. DataReader: This object provides fast read-only, forward-only access to the data
retrieved from a query.
4. DataAdapter: This object performs two tasks. First, you can use it to fill a DataSet
with information extracted from a data source. Second, you can use it to apply

changes to a data source, according to the modifications made in a DataSet.

ADO.NET Data Providers:

Instead, it includes different data providers specifically designed for different types
of data sources.

Each data provider has a specific implementation of the Connection, Command,
DataReader, and DataAdapter classes that’s optimized for a specific RDBMS.

For example, if you need to create a connection to a SQL Server database, use a
connection class named SqglConnection.

You can easily create custom ADO.NET providers to wrap non relational data
stores, such as the file system or a directory service.

Some third-party vendors also sell custom providers for NET

ADO.NET Data Providers:
e The .NET Framework is bundled with a small set of four providers: ADO.Net

1. SQL Server provider: Provides optimized access to a SQL Server database. Uses

the System.Data.SalClient namespace.

2. OLE DB provider: Provides access to any data source that has an OLE DB driver.

Uses the System.Data.OleDb namespace.

3. Oracle provider: Provides optimized access to an Oracle database. The .NET
Framework Data Provider for Oracle supports Oracle client software version 8.1.7

and later, and uses the System.Data.OracleClient namespace.

4. ODBC provider: Provides access to any data source that has an ODBC driver.

Uses the System.Data.Odbc namespace.

DataSet:
e The DataSet object stores data retrieved from a data source in-memory.

e |t operates independently of the data source, supporting disconnected data

management.

e DataSet holds multiple DataTables and supports relationships, constraints, and

more

ADO.NET does not provide a single set of objects that communicate with multiple
database management systems (DBMSs).

ADO.NET supports multiple data providers, each of which is optimized to interact
with a specific DBMS.

The first benefit of this approach is that you can program a specific data provider
to access any unique features of a particular DBMS.

The second benefit is that a specific data provider can connect directly to the
underlying engine of the DBMS in question without an intermediate mapping layer

standing between the tiers to communicate with a specific type of data source.

Type of
Object

Base Class

Relevant
Interfaces

Meaning in Life

Connection

DbConnection

IDbConnection

Provides the ability
to connect to and
disconnect from the
data store.
Connection objects
also provide access
to a related
transaction object.

Command

DbCommand

IDbCommand

Represents a SQL
query or a stored
procedure.
Command objects
also provide access
to the provider’s
data reader object.

Type of Base Class Relevant Meaning in Life
Object Interfaces

DataReader DbDataReader | IDataReader, Provides forward-
IDataRecord only, read-only
access to data using
a server-side cursor.
DataAdapter | DbDataAdapter | IDataAdapter, Transfers DataSets
IDbDataAdapter between the caller

and the data store.
Data adapters
contain a connection
and a set of four
mternal command
objects used to

select, insert,
update, and delete
mnformation from

the data store.

Type of Base Class Relevant Meaning in Life
Object Interfaces
Parameter | DbParameter | IDataParameter, | Represents a named
IDbDataParameter | parameter within a
parameterized
query.
Transaction | DbTransaction |IDbTransaction | Encapsulates a

database transaction

e Uses its own protocol for communicating with SQL Server.

e Optimized for direct access to SQL Server, avoiding OLE DB or ODBC layers.

e Classes are located in the System.Data.SqlClient namespace.

e Supports local and distributed transactions.

e To connect to Microsoft SQL Server, use the SglConnection object of the .NET
framework Data Provider for SQL Server

e ADO.NET SqglConnection Class- It is used to establish an open connection to
the SQL Server database. It is a sealed class so that cannot be inherited.

e SqlConnection class uses SqglDataAdapter and SglCommand classes together
to increase performance when connecting to a Microsoft SQL Server database.

e Connection does not close explicitly even it goes out of scope. Therefore, you

must explicitly close the connection by calling Close() method.
D

e Example code:
1. Import Required Namespaces:

First, you need to import the necessary namespaces for ADO.NET classes. For example, if you're using the
SQL Server data provider, you'll import the system.pata.sqiciient namespace.

using System.Data.SqlClient;

2. Create Connection String:

You need to prepare a connection string that contains information about the database server, credentials,
and other settings. This string is used to establish the connection.

string connectionString = "Server=myServerAddress;Database=myDatabase;User Id=myUsername;Password=myPasswor
d;";

Replace myServerAddress , myDatabase , myUsername , aNd myPassword With your actual server and authentication
details.

3. Create Connection Object:

Use the connection string to create a connection object from the appropriate class in the data provider. For
SQL Server, you would use sqgiconnection .

SqlConnection connection = new SqlConnection(connectionString);

4. Open the Connection:
After creating the connection object, you need to explicitly open the connection to the database.

connection.Open();

5. Use the Connection:

Once the connection is open, you can use it to execute SQL commands, queries, or other database
operations.

6. Close the Connection:
After you're done using the connection, it's important to close it to release resources and free up

connections in the pool.

connection.Close();

7. Dispose of Resources:
To ensure proper resource management, you should dispose of the connection object when you're done

with it. This is especially important if you're using the using statement, which automatically disposes of the

object when it goes out of scope.

using (SqlConnection connection = new SqlConnection(connectionString))

{

connection.Open();
// Perform database operations here

} // The connection will be automatically disposed here

Creating a Connection

It is not recommended to hardcode a connection string. Storing the connection string in the
configuration file(web.config) is most suitable. So if any changes happen then they can be
done in one place only.

<connectionStrings>
<add name="ConnectionString"

</connectionStrings>

Note: You need to put the above connection string inside the configuration section of
the configuration file.

Creating a Connection

How to read the connection string from the app.config file?
Accessing the connection string from web.config

ConString =
ConfigurationManager. : g
SglConnection connection = ConString

connection.
Console.

The Command Object is a fundamental component of ADO.NET.

e |t uses a connection object to execute SQL queries.

e Queries can be in the form of inline text, stored procedures, or direct table
access.

e The Command Object can execute queries and stored procedures with
parameters.

e When a SELECT query is executed, the result set is usually stored in a DataSet

or a DataReader object.

Properties of

SglCommand class

Property Type of Description
Access
Connection Read/Write | The SqlConnection object that is used
by the command object to execute SQL
queries or Stored Procedure.
CommandText Read/Write | Represents the T-SQL Statement or the
name of the Stored Procedure.
CommandType Read/Write | This property indicates how the
CommandText property should be
mterpreted. The possible values are:
1. Text (T-SQL Statement)
2. StoredProcedure (Stored Procedure
Name)
3. TableDirect
CommandTimeout | Read/Write | This property indicates the time to wait

when executing a particular command.

Default Time for Execution of
Command 1s 30 Seconds.

The Command i1s aborted after it times
out and an exception i1s thrown.

Properties of execute

methods

Property Description

ExecuteNonQuery | This method executes the command specified and
returns the number of rows affected.

ExecuteReader The ExecuteReader method executes the command
specified and returns an instance of SqlDataReader
class.

ExecuteScalar This method executes the command specified and
returns the first column of the first row of the result
set. The remaining rows and columns are 1gnored.

ExecuteXMLReader | This method executes the command specified and

returns an instance of XmlReader class. This
method can be used to return the result set 1n the
form of an XML document

e A data reader provides an easy way for the programmer to read data from a
database as if it were coming from a stream.

e The data reader is also called a firehose cursor or forward read-only cursor
because it moves forward through the data.

e The data reader not only allows you to move forward through each record of
the database, but it also enables you to parse the data from each column.

e The DataReader class represents a data reader in ADO.NET

e Similar to other ADO.NET objects, each data provider has a data reader class
for example; OleDbDataReader is the data reader class for OleDb data
providers. Similarly, SglDataReader and ODBC DataReader are data reader
classes for SQL and ODBC data providers, respectively.

DATAREADER

e The IDataReader interface defines the function of a data reader and works as

the base class for all data provider-specific data reader classes

DataReader Properties

Property Description
Depth Indicates the depth of nesting for row
FieldCount Returns number of columns 1n a row
IsClosed Indicates whether a data reader 1s closed
Item Gets the value of a column 1n native format
RecordsAffected Number of row affected after a transaction

DATAREADER

DataReader methods

Method Description

Close Closes a DataRaeder object.

Read Reads next record in the data reader.

NextResult Advances the data reader to the next result during batch
transactions.

Getxxx There are dozens of Getxxx methods. These methods
read a specific data type value from a column. For
example. GetChar will return a column value as a
character and GetString as a string.

// Create a connection string
_ String ConnectionString = "Integrated Security=SSPI; " +
"Initial Catalog=Northwind; ™ =+

"pData source=localhost; ";
example string SQL = "SELECT * FROM Customers”;

// Create a connection object
SqlConnection conn = new SqlConnection(ConnectionString);

// Create a command object
SqlCommand cmd = new SglCommand(SQL, conn);
conn.Open();

/7 Call ExecuteReader to return a DataReader
SqlbataReader reader = cmd.ExecuteReader();

Console. . WriteLine("Customer ID, Contact Name, Contact Title, Address ");
Console . WriteLine(s sesmssssessssssrsesessssssssssss==") ;

while (reader.Read())

{
Console.write(reader["CustomerID"].ToString() + ", ");
Console.write(reader["ContactName"].ToString() + ", ");
Console.write(reader["ContactTitle"].ToString() + ", ");
Console.wWritelLine(reader["Address"].ToString() + ", ");
3

/7 Release resources

reader .Close();

conn.Close();
e ———————-————=———=

Connected V/s Disconnected Data Access

Connected Data Access

Disconnected Data Access

In Connected Data Access, the application
maintains an open and continuous connection to
the database while interacting with it. This
connection remains active as long as the
application is performing database operations.

In Disconnected Data Access, the application
connects to the database temporarily to retrieve
data. Once the data is fetched, the database
connection is closed. The application then works
with the data in memory.

With a continuous connection, you can directly
execute SQL queries against the database in
real-time. This means that you can immediately
access and manipulate data as needed.

The data retrieved from the database is stored in
memory, typically within a DataSet or DataTable.
The application can manipulate and work with
this data without maintaining an active database
connection.

Connected Data Access provides access to
real-time data. Any changes made to the data in
the database by other applications or users can
be immediately reflected in your application.

Changes made to the in-memory data can be
tracked, and batch updates can be sent back to
the database when needed. This allows you to
update the database efficiently

Connected V/s Disconnected Data Access

Connected Data Access

Disconnected Data Access

This approach is typically suitable for scenarios
where real-time data access and immediate
updates to the database are essential. For
example, in applications requiring continuous
monitoring or data input, such as online
transaction processing (OLTP) systems.

Disconnected Data Access is well-suited for
scenarios where you need to work with data
flexibly and efficiently without the overhead of a
continuous database connection. It's commonly
used in applications that require reporting, data
analysis, or scenarios where database
connections are costly.

Key components include SqglConnection for
managing the database connection,
SqglCommand for executing SQL queries, and
SqglDataReader for reading query results.

Key components include DataAdapter for
fetching data from the database and updating it,
DataSet or DataTable for storing data in
memory, and DataRow for working with
individual rows of data.

e Data binding is an aspect that allows us to associate a data source with
a control and have that control automatically display data.

e The main characteristic of data binding is that it's declarative, not
programmatic. That means data binding is defined outside program,
alongside the controls in the .aspx page.

e Types of data binding:

- Single value

- Multi value

Single-Value Data Binding

e Single-Value Data Binding allows you to bind individual values from a data
source to specific properties of Ul controls.

e FEach data-bound control displays a single value from the data source. For
example, you can bind a TextBox's Text property to a single value from the
data source.

e Single-Value Data Binding is typically used when you want to display and
edit individual data fields. It is suitable for scenarios where each control
corresponds to a specific data attribute.

e Data binding expressions for single-value binding are enclosed within <%#

... %> delimiters in the .aspx markup

Single-Value Data Binding

To evaluate a data binding expression, you must call the Page.DataBind()
method in program.

While calling DataBind(), ASP.NET will examine all the expressions on page and
replace them with the corresponding value.

If we forget to call the DataBind() method, the data binding expression won’t
be filled in instead, it just gets thrown away when page is rendered to HTML.
In ASP.NET, most web controls (including TextBox, LinkButton, Image, and
many more) support single-value data binding.

Examples: Binding a label's text to a user's name, binding a textbox to a
product's price, or binding an image control's source to an image URL are
examples of single-value data binding.

Single-Value Data Binding

In this example, we'll bind a single value (a user's name) to a Label control's Text
property.

In this case, the GetUserName() method retrieves the user's name from a data
source (or any source you prefer), and this name is bound to the Text property of
the IblUserName Label control using a data binding expression.

<asp:Label ID="Labell" runat="server" Text="<%#uname %>"></asp:Label>

public partial class WebForml : System.Web.UI.Page
{

public string uname;
0 references
protected void Page_Load(object sender, EventArgs e)
{
uname = "abc";
this.DataBind();

}

Multi-Value Data Binding/ Repeated- value data binding

e Multi-Value Data Binding allows you to bind collections of data, such as arrays,
lists, or datasets, to controls that display multiple values.

e Controls supporting multi-value binding can display a collection of items from
the data source. For example, a ListBox can display a list of items from a
dataset.

e Multi-Value Data Binding is used when you need to display a list or grid of
data, such as a list of products, a set of search results, or a table of records.

e Controls that support multi-value data binding include ListBox, DropDownlList,
CheckBoxList, RadioButtonList, GridView, and others.

e Multi-Value Data Binding typically requires a data source that contains multiple

records or items, such as a dataset with multiple rows.

Multi-Value Data Binding/ Repeated- value data binding

e Multi-Value Data Binding involves setting the DataSource property of a control
to the data source and calling the DataBind() method to populate the control
with multiple values.

e Examples: Binding a dataset containing a list of products to a GridView,
binding a collection of items to a ListBox, or displaying search results in a
GridView are examples of multi-value data binding.

e |n this example, we'll bind a collection of products to a DropDownList control

for the user to select from.

<!-- .aspx Markup -->
<asp:DropDownList ID="ddlProducts" runat="server"></asp:DropDownList>

Multi-Value Data Binding/ Repeated- value data binding

// Code-Behind (C#)
protected void Page_Load(object sender, EventArgs e)

{
if (!IsPostBack)

{
// Simulated product data as a list
List<string> products = new List<string>
{
"Product A", "Product B", "Product C", "Product D"
}i

// Bind the list of products to the DropDownList
ddlProducts.DataSource = products;
ddlProducts.DataBind();

Multi-Value Data Binding/ Repeated- value data binding
e Data Properties for List Controls Data Binding

1. DataSource

* Represents a data object containing a collection of data items to display.

e The data object must implement one of the supported interfaces, typically ICollection.

2. DataSourcelD
» Instead of programmatically supplying the data object, this property links the list control to a data
source control.

e The data source control generates the required data object automatically.

» Use either DataSource or DataSourcelD, but not both simultaneously.

Multi-Value Data Binding/ Repeated- value data binding
3. DataTextField

« Specifies the field (for data sources with rows) or property (for data sources with objects) of the data
item that contains the value to display.

e Each list item displays a single value from this field or property.
4. DataTextFormatString

* An optional property that defines a format string to format each DataTextValue before displaying it.

» Useful for specifying how data values should be presented, e.g., formatting a number as currency.
5. DataValueField

» Related to DataTextField but not displayed on the page.

» The value from this field or property is stored in the vawe attribute of the underlying HTML tag.

» Enables retrieval of the selected item's value in the program.

» Typically used to store a unique ID or primary key for further data retrieval.

e The SqglDataSource control represents a connection to a relational
database such as SQL Server or Oracle database, or data accessible
through OLEDB or Open Database Connectivity (ODBC).

e Connection to data is made through two important properties
ConnectionString and ProviderName.

e The following code snippet provides the basic syntax of the control:
<asp:SqlDataSource runat="server" ID="MySqlSource"

ProviderName='<%S ConnectionStrings:LocalNWind.ProviderName %>'
ConnectionString='<%5 ConnectionStrings:LocalNWind %>'
SelectionCommand= "SELECT * FROM EMPLOYEES" />

<asp:GridView ID="GridView1" runat="server" DataSourcelD="MySqlSource" />
e

e The SqglDataSource command logic is supplied through four properties:
o SelectCommand
o InsertCommand
o UpdateCommand
o DeleteCommand,
e Each command takes a string. The string we supply can be inline SQL
e Example: SglDataSource that defines a SELECT command for

retrieving records.

<asp:SqlDataSource ID="sourceEmployees" runat="server"
ProviderName="System.Data.SqlClient" ConnectionString="<%$
ConnectionStrings:Northwind %>" SelectCommand="SELECT
EmployeelD, FirstName, LastName, Title, City FROM Employees"/>

DATA CONTROLS

e The GridView is an extremely flexible grid control for showing data in a
basic grid consisting of rows and columns.

e The GridView control is used to display the values of a data source in a

table. Each column represents a field, while each row represents a

record.

The GridView control supports the following features:

Binding to data source controls, such as SqglDataSource.

Built-in sort capabilities.

Built-in update and delete capabilities.

B W N 2 .

Built-in paging capabilities.

5. Built-in row selection capabilities.

6. Programmatic access to the GridView object model to dynamically set

properties, handle events, and so on.
/. Multiple key fields.
8. Multiple data fields for the hyperlink columns.

9. Customizable appearance through themes and styles.

e Each column in the GridView control is represented by a DataControlField
object. By default, the AutoGenerateColumns property is set to true, which
creates an AutoGeneratedField object for each field in the data source.

e FEach field is then rendered as a column in the GridView control in the
order that each field appears in the data source.

e You can also manually control which column fields appear in the GridView
control by setting the AutoGenerateColumns property to false and then
defining your own column field collection.

e Different column field types determine the behavior of the columns in the
control. The following table lists the different column field types that can

be used.
D

Column field Description

type

BoundField Displays the value of a field in a data source. This is the default column type of
the GridView control.

ButtonField Displays a command button for each item in the GridView control. This enables
you to create a column of custom button controls, such as the Add or the
Remove button.

CheckBoxField Displays a check box for each item in the GridView control. This column field type

iIs commonly used to display fields with a Boolean value.

CommandField

HyperLinkField

ImageField

TemplateField

Displays predefined command buttons to perform select, edit, or delete
operations.

Displays the value of a field in a data source as a hyperlink. This column field type
enables you to bind a second field to the hyperlink's URL.

Displays an image for each item in the GridView control.

Displays user-defined content for each item in the GridView control according to
a specified template. This column field type enables you to create a custom
column field.

<asp:Gridview ID="Gridviewl" runat="server" AutoGenerateColumns="true" DataSourceID="SqlDataSourcel">
</asp:Gridview>
<asp:SqlDataSource ID="SqlDataSourcel" runat="server" ConnectionString="<%$ ConnectionStrings:YourConnectionString
%>'l

SelectCommand="SELECT * FROM YourTable">
</asp:SqlbataSource>

DetailsView Control

* The DetailsView control is used to display a single record from a data
SOtl)JII’CE in a table, where each field of the record is displayed in a row of the
table.

* It can be used in combination with a GridView control for master-detail
scenarios. The DetailsView control supports the following features:

Binding to data source controls, such as SqlDataSource.
Built-in inserting capabilities.

Built-in updating and deleting capabilities.

Built-in paging capabilities.

Programmatic access to the DetailsView object model to dynamically set
properties, handle events, and so on.

Customizable appearance through themes and styles.

AR

22

e Each data row in the DetailsView control is created by declaring a field
control. Different row field types determine the behavior of the rows in the
control.

e Field controls derive from DataControlField. The following table lists the
different row field types that can be used.

<asp:Detailsview ID="detailsview" runat="server" DataSourceID="sqlDataSource" AutoGenerateRows="true">
<EmptyDataTemplate>
No data available.

</EmptyDataTemplate>
</asp:DetailsVview>

<asp:SqlDataSource ID="sqlDataSource" runat="server" ConnectionString="<%$ ConnectionStrings:YourConnectionString %>"
SelectCommand="SELECT * FROM Employees" />

Column field Description

type
BoundField Displays the value of a field in a data source as text.
ButtonField Displays a command button in the DetailsView control. This allows you to display

a row with a custom button control, such as an Add or a Remove button.

CheckBoxField Displays a check box in the DetailsView control. This row field type is commonly
used to display fields with a Boolean value.

CommandField Displays built-in command buttons to perform edit, insert, or delete operations in
the DetailsView control.

HyperLinkField ~ Displays the value of a field in a data source as a hyperlink. This row field type
allows you to bind a second field to the hyperlink's URL

ImageField Displays an image in the DetailsView control.

TemplateField Displays user-defined content for a row in the DetailsView control according to a
specified template. This row field type allows you to create a custom row field.

FormView Control

* The FormView control is used to display a single record from a data source. It is
similar to the DetailsView control, except it displays user-defined templates
instead of row fields.

. Creating your own templates gives you greater flexibility in controlling how the
data is displayed.

* The FormView control supports the following features:

Binding to data source controls, such as SqlDataSource and ObjectDataSource.
Built-in inserting capabilities.

Built-in updating and deleting capabilities.

Built-in paging capabilities.

Programmatic access to the FormView object model to dynamically set
properties, handle events, and so on.

Customizable appearance through user-defined templates, themes, and styles.

Al o e

o

e F[orthe FormView control to display content, you need to create templates
for the different parts of the control.

e Most templates are optional; however, you must create a template for the
mode in which the control is configured.

e [or example, a FormView control that supports inserting records must
have an insert item template defined. The following table lists the different

templates that you can create.

Template type

EdititemTemplate

EmptyDataTemplate

FooterTemplate

Description

Defines the content for the data row when the FormView control is in edit mode. This template usually
contains input controls and command buttons with which the user can edit an existing record.

Defines the content for the empty data row displayed when the FormView control is bound to a data

source that does not contain any records. This template usually contains content to alert the user that
the data source does not contain any records.

Defines the content for the footer row. This template usually contains any additional content you would
like to display in the footer row. Note: As an alternative, you can simply specify text to display in the
footer row by setting the FooterText property.

HeaderTemplate

itemTemplate

InsertitemTemplate

PagerTemplate

Defines the content for the header row. This template usually contains any additional content you would
like to display in the header row. Note: As an alternative, you can simply specify text to display in the
header row by setting the HeaderText property.

Defines the content for the data row when the FormView control is in read-only mode. This template
usually contains content to display the values of an existing record.

Defines the content for the data row when the FormView control is in insert mode. This template usually
contains input controls and command buttons with which the user can add a new record.

Defines the content for the pager row displayed when the paging feature is enabled (when the
AllowPaging property is set to true). This template usually contains controls with which the user can
navigate to another record. Note: The FormView control has a built-in pager row user interface (Ul). You
need to create a pager template only if you want to create your own custom pager row.

<asp:Formview ID="formview" runat="server" DataSourceID="sqlDataSource" DefaultMode="ReadOnly">
<EmptyDataTemplate>
No data available.
</EmptyDataTemplate>
<ItemTemplate>
<h3>Name: <%# Eval("EmployeeName") %></h3>
<p>Email: <%# Eval("Email") %></p>
</ItemTemplate>
<EditItemTemplate>
<h3>Edit Employee</h3>
Name: <asp:TextBox ID="txtEditName" runat="server" Text='<%# Bind("EmployeeName") %>' />

Email: <asp:TextBox ID="txtEditEmail" runat="server" Text='<%# Bind("Email") %>' />

<asp:Button ID="btnUpdate" runat="server" Text="Update" CommandName="Update" />
<asp:Button ID="btnCancel" runat="server" Text="Cancel" CommandName="Cancel" />
</EditItemTemplate>
</asp:Formview>

<asp:SqlDataSource ID="sglDataSource" runat="server" ConnectionString="<%$ ConnectionStrings:YourConnectionString %"
SelectCommand="SELECT EmployeeName, Email FROM Employees" />

XML stands for EXtensible

Markup Language XML is a
markup language much like
HTML. XML was designed to
describe data

XML tags are not predefined. WORKI NG

You must define your own

tags

XML uses a Document Type WITH XM L
Definition (DTD) or an XML

Schema to describe the data

XML with a DTD or XML

Schema is designed to be self _

descriptive

e The .NET framework contains a rich set of classes for working with XML
data. Classes are divided into multiple namespaces.

The main classes for working with XML data are as follows :
XmlTextReader

XmlTextWriter

XmIDocument

XmIDataDocument

XmINodeReader

DocumentNavigator

DataDocumentNavigator

O N O 0k W N =

XslTransform

1. The XmlTextWriter class is part of the System.Xml namespace and is used
for writing XML data.

2. It provides a way to create and format XML documents by writing
elements, attributes, and content to an output stream, such as a file or a
memory buffer.

3. XmlTextWriter provides methods like WriteStartElement , WriteEndElement
, and WriteElementString to create XML elements and their content.

4. You can add attributes to elements using WriteStartAttribute and
WriteEndAttribute methods.

5. It can automatically format the XML data for human readability with

indentation and line breaks.

public void writexml()

{
XmlTextWriter wrt = new XmlTextWriter("users.xml", null);
wrt.WriteStartElement("Users"); //rootelement
; \ wrt.WriteStartElement("user");
\ -: " <) lﬁ] C:\059\DotNet\ConsoleApp1\bin\Debug\users.xml wrt.WriteAttributeString("id", "1");
=5 wrt.WriteString("XYZ");
] @c \059\DotNet\ConsoIeAp x |Cf] wrt.WriteEndElement();
wrt.WriteStartElement("user");
<?xml version="1.0"?> wrt.WriteAttributeString("id", "2");
- <Users> wrt.wr::LteSt;‘iTg(“ABC");
<user id="1">XYZ</user> wrt.WriteEndElement();
<user id="2">ABC</user>
</Users> wrt.WriteEndElement();
wrt.Close();|
}

6. So, we start by creating an instance of the XmlTextWriter class. It takes at
least one parameter, in this case the path to where the XML should be

written, but comes in many variations for various purposes.

/. The first thing we should do is to call the WriteStartDocument() method.
After that, we write a start element called "users". The XmlTextWriter will

translate this into <users>.

8. Before closing it, we write another start element, "user", which will then
become a child of "users". We then proceed to adding an attribute (age) to
the element, using the WriteAttributeString() method, and then we write the

inner text of the element, by calling the WriteString() method.

9. We then make sure to close the first "user" element with a call to the
WriteEndElement() method.

10. This process is repeated to add another user, lastly we call the
WriteEndDocument() method.

1. To get the XmIWriter to write our data to the disk, we call the Closg|)
method. You can now open the file, "myfile.xml", in the same directory
where the EXE file of your project is, usually in the bin\debug directory.

1.

The XmlTextReader class, also part of the System. Xml namespace, is
used for reading XML data.

It provides a forward-only, read-only way to parse and navigate through
XML documents.

XmlTextReader provides forward-only, read-only access to a stream of
XML data. The current node refers to the node on which the reader is
positioned.

The reader is advanced using any of the read methods and properties
reflect the value of the current node.

5. XmlITextReader reads XML data sequentially, from start to finish, in a
forward-only manner, which minimizes memory consumption and improves

performance.

6. XmlTextReader offers methods like Read , ReadStartElement ,

ReadEndElement , and ReadString to traverse XML elements and extract

data.

/. 1t can perform validation against XML schemas (XSD) and report errors

when the XML data doesn't conform to the schema.

XmlTextReader

public void readxmldata() Bl C:\059\DotNet\ConsoleApp1\bi
{

XmlTextReader reader = new XmlTextReader(“"users.xml");
while (reader.Read())
{

Console.WriteLine(reader.ReadString());

}

XmlTextReader

using System.Xml; Root

namespace ConsoleAppl{ Elementl: user, Content:

internal class Program{

static void Main(string[] args){
XmlTextReader reader = new XmlTextReader("myfile.xml");
while (reader.Read())
{
// Check the node type
if (reader.NodeType == XmlNodeType.Element)
{
// Read element name
string elementName = reader.Name;
Console.WriteLine("Root",elementName);
// Read element content
reader.ReadToFollowing("user");
string childname = reader.Name;

John Doe

string elementContent = reader.ReadElementContentAsString("user"”,"");
Console.WriteLine($"Elementl: {childname}, Content: {elementContent}");

Console.ReadKey();

e Caching in .NET refers to the temporary storage of data in memory to
improve application performance by reducing the need to fetch the
same data repeatedly from the original source, such as a database or a
web service.

e Unlike many other performance enhancing techniques, caching
bolsters both performance and scalability.

e Performance is better because the time taken to retrieve the
information is cut down dramatically.

e Scalability is improved because you work around bottlenecks such as

database connections.

e \When we store information in a cache, we expect to find it there on a

Caching future request most of the time. However, the lifetime of that
information is at the discretion of the server.

e |If the cache becomes full or other applications consume a large
amount of memory, information will be selectively evicted from the
cache, ensuring that performance is maintained. It’s this self sufficiency

that makes caching so powerful.

NET provides several types of caching mechanisms to achieve this:

Output Caching
Data caching

Fragment caching

H W N

Data source caching

Output Caching

Output caching is used to cache the entire HTML output of a web
page.

When a page is requested for the first time, ASP.NET processes the
page and caches the resulting HTML.

Subsequent requests for the same page are served directly from the
cache without executing the page's code.

Reduces server load and improves response time, especially for pages
with content that doesn't change frequently.

Output caching can be configured using the @OutputCache directive in
ASP.NET Web Forms

e Different types of output caching are as follows:
A. Declarative Output Caching

L

Output caching stores a copy of the final rendered HTML page to improve
performance.You can add the OutputCache directive to your ASP.NET
page to specify caching settings.

<%@ OutputCache Duration="20" VaryByParam="None" %>

B. Caching and the Query String
[Caching allows you to efficiently reuse slightly stale data while improving
performance. You can use the VaryByParam attribute to cache separate

copies of the page based on query string parameters.

<%@ OutputCache Duration="20" VaryByParam="*" %>

e Different types of output caching are as follows:
C. Caching with Specific Query String Parameters

A For more precise control, you can specify specific query string parameters
to vary caching. This is useful when you want to cache pages with different

query string values separately

<%@ OutputCache Duration="20" VaryByParam="ProductID" %>

2. Data caching

e Data caching is used to store data or objects in memory to avoid
repeated expensive data retrievals from sources like databases

e In your code, you manually store and retrieve data from the cache
using keys.

e When data is cached, it's stored in memory and can be quickly
accessed without performing the original data retrieval operation.

e Reduces database or data source load, improving application
performance

® You can set expiration policies on cached data, such as time-based
expiration or dependency-based expiration.

® You can add items to the cache using the Cache["key"] = item; syntax.

e A better approach is to use the Cache.Insert() method, which allows
you to specify various caching parameters, including dependencies,
expiration, and priority.

Cache.Insert("MyItem", obj, null, DateTime.MaxValue, TimeSpan.FromMinutes(10));

3. Fragment caching

Purpose: Fragment caching is a variation of output caching, where only a portion (or fragment) of a
web page is cached.

How it Works: You can cache the output of user controls or specific parts of a page, rather than the
entire page. This allows you to selectively cache parts of a page that are more static while keeping
dynamic content uncached.

Advantages: Fine-grained control over caching for specific page sections, reducing processing time for
dynamic content.

Configuration: Typically implemented using user controls and the <« outputcache %> directive.

4. Data source caching
» Purpose: Data source caching is specific to data source controls like SglDataSource,

ObjectDataSource, and XmiDataSource.

» How it Works: These data source controls have built-in caching mechanisms. You configure properties
such as cacheouration to Specify how long data retrieved from these sources should be cached.

+ Advantages: Simplifies caching for data-bound controls by providing declarative caching settings.

 Configuration: Configure caching properties directly in the data source control declarations.

<asp:SqlDataSource ID = "SqlDataSourcel" runat = "server"
ConnectionString = "<%S ConnectionStrings: connectionstringlD %>"
ProviderName = "<%5 ConnectionStrings: SQLProviderName %>"
SelectCommand = "SELECT * FROM [dbTablename]"
EnableCaching = "true" CacheDuration = "60">
</asp:SqlDataSource>

LINQ in C# is used to work with
data access from sources such as

objects, data sets, SQL Server,
and XML.

LINQ stands for Language
Integrated Query. LINQ is a data
querying API with SQL like query
syntaxes.

LINQ provides functions to query
cached data from all kinds of data
sources.

The data source could be a
collection of objects, database or
XML files.

We can easily retrieve data from
any object that implements the
IEnumerable<T> interface.

LINQ

(Language
Integrated
Query)

Advantages of LINQ:
1. Familiar Language: No need to learn a new query language for each data source or format.
2. Less Coding: Reduces the amount of code compared to traditional approaches.
3. Readable Code: Enhances code readability for easier maintenance.
4. Standardized Querying: Same LINQ syntax for multiple data sources.
5. Compile-Time Safety: Provides type checking at compile time.
6. IntelliSense Support: Offers IntelliSense for generic collections.

7. Data Shaping: Retrieve data in various formats.

Disadvantages of LINQ:

1. Complex Queries: Writing complex queries can be challenging compared to SQL.
2. Lack of Execution Plans: Cannot leverage SQL's Cached Execution Plans.
3. Performance Impact: Poorly written queries can degrade performance.

4. Recompilation: Changes to queries may require application recompilation and redeployment.

Common LINQ Operators:

1

0 S8 N Te i B e 0

[
o

Where: Filters a collection based on a specified condition.

Select: Projects elements of a collection into a new form.

OrderBy: Sorts elements in ascending or descending order.

GroupBYy: Groups elements in a collection based on a common key.

Join: Combines two collections based on a common key.

Aggregate: Performs an aggregation operation (e.g., sum, average) on a collection.
Any: Checks if any elements in a collection satisfy a condition.

All: Checks if all elements in a collection satisfy a condition.

Distinct: Removes duplicate elements from a collection.

Take: Returns a specified number of elements from the start of a collection.

List<Person> people = new List<Person>

{
new Person { Name = "Alice", Age = 25 },
new Person { Name = "Bob", Age = 32 },
new Person { Name = "Charlie", Age = 28 },
new Person { Name = "David", Age = 35 },
}i

// LINQ query to filter people above 30 years old
var result = from person in people

where person.Age > 30

select person;

// Print the result
Console.WriteLine("People above 30 years old:");
foreach (var person in result)

{

Console.WriteLine($"{person.Name}, {person.Age} years

old");

ASP.NET AJAX

1.

AJAX stands for Asynchronous JavaScript and XML. This is a cross
platform technology which speeds up response time. The AJAX server
controls add script to the page which is executed and processed by
the browser.

However like other ASP.NET server controls, these AJAX server
controls also can have methods and event handlers associated with
them, which are processed on the server side.

The control toolbox in the Visual Studio IDE contains a group of

controls called the 'AJAX Extensions’

e The ScriptManager is an important component in ASP.NET AJAX that is
used to manage client-script libraries, partial-page rendering, and other
client-side functionalities. It is primarily associated with ASP.NET Web
Forms applications

e |tis both a server-side control (<asp:ScriptManager>) and a client-side
script (Sys.WebForms.PageRequestManager) that enables AJAX
functionality in ASP.NET web applications

e The ScriptManager control can be placed on your web page, typically
in the <form> tag, to enable AJAX features.

e |tis essential to have only one ScriptManager control per page
—

e |n this example, we have added a ScriptManager control to the web
page. It enables AJAX functionality and handles JavaScript libraries

and scripts.

<asp:ScriptManager ID="ScriptManagerl" runat="server"></asp:ScriptManager>

e Partial page refreshes, often referred to as partial rendering or AJAX
updates, allow specific sections of a web page to be refreshed without

reloading the entire page.

e This technique greatly improves the user experience by reducing
flicker and improving response times.

e ASP.NET AJAX provides the UpdatePanel control to enable partial

page refreshes. You wrap the content you want to update in an

UpdatePanel .

e The UpdateMode property of the UpdatePanel determines when an
update should occur. Options include "Always" (default) or "Conditional”
(only when triggered explicitly).

e Partial refreshes are ideal for scenarios where you want to update
specific parts of a page, such as a shopping cart, chat messages, or
live search results, without affecting the rest of the page.

<asp:UpdatePanel ID="UpdatePanell" runat="server">
<ContentTemplate>
<!-- Content you want to refresh -->
<asp:Label ID="lblMessage" runat="server" Text="Initial Content"></asp:Label>

<asp:Button ID="btnUpdate" runat="server" Text="Update Content" OnClick="btnUpdate_Click" />
</ContentTemplate>

</asp:UpdatePanel>

In this example, we have an UpdatePanel containing a label and a button.
When the button is clicked, only the content within the UpdatePanel will be
refreshed without reloading the entire page. Here's the server-side code to

handle the button click event;

protected void btnUpdate_Click(object sender, EventArgs e)

{
IbIMessage.Text = "Updated Content";

e Progress notification is a feature in ASP.NET AJAX that provides feedback
to users during asynchronous operations, indicating that something is
happening in the background.

e |tis often implemented using the UpdateProgress control.

e The UpdateProgress control allows you to define content that is displayed
to the user while an asynchronous operation is in progress, typically
accompanied by a loading animation (e.g., a spinning wheel or progress
bar).

e Progress notification enhances user experience by letting users know that
their request is being processed, especially in cases where operations

may take some time to complete.
D

<asp:UpdateProgress ID="updateProgressl" runat="server">

<ProgressTemplate>
<div class="progress-container">

Loading...
</div>
</ProgressTemplate>

</asp:UpdateProgress>

In this example, we use the UpdateProgress control to display a
loading spinner and a "Loading..." message during an asynchronous
operation within an UpdatePanel . When an operation is in progress,
this content will be shown automatically, and it will disappear when

the operation is completed.

Timed refreshes involve updating content on a web page at regular
intervals, without requiring user interaction.

ASP.NET AJAX provides the Timer control (<asp:Timer>) to
facilitate timed refreshes.

You set the Interval property of the Timer control to specify the time
(in milliseconds) between each refresh.

When the timer's interval elapses, it triggers a postback (either full
or partial, depending on context) and invokes a server-side event
(e.g., OnTick).

e Timed refreshes are useful for scenarios like displaying real-time data
(e.g., stock prices, weather updates), live notifications, or periodically

updating content on a page (e.g., news feeds).

Timed Refreshes Example:

<asp:Timer ID="Timer1l" runat="server" Interval="5000" OnTick="Timerl_Tick" />
<asp:Label ID="1blTime" runat="server" Text="Current Time: " />

In this example, we have a Timer control set to refresh every 5000
milliseconds (5 seconds). The timer is linked to a label. Here's the

server-side code to handle the timer tick event:
D

protected void Timerl_Tick(object sender, EventArgs e)

{

lblTime.Text = "Current Time: " + DateTime.Now.ToLongTimeString();

}

This code updates the label's text with the current time every 5 seconds

without requiring any user interaction.

These examples demonstrate how to use ScriptManager, perform partial
refreshes, provide progress notifications, and implement timed refreshes in
ASP.NET AJAX applications.

