
.NET TECHNOLOGIES
UNIT 1

Asst. Prof. Jesica D’cruz

The .NET Framework

● The .NET Framework is a comprehensive software platform developed by
Microsoft that provides tools, libraries, and runtime environments for building
and running various types of applications.

● The .NET Framework was primarily used for Windows applications, although
more versions like .NET Core (now .NET 5+ /6+/7+/8+) offer cross-platform
capabilities.

● .NET Framework consists of the common language runtime (CLR) and the
.NET Framework class library.

● .NET Languages are computer programming languages that are used to
produce programs that execute within the Microsoft .NET Framework.

● Microsoft provides several such languages, including C#, Visual Basic .NET, and
C++/CLI

● .NET Framework supports more than 60 programming languages in which 11
programming languages are designed and developed by Microsoft.

● The remaining Non-Microsoft Languages which are supported by .NET
Framework but not designed and developed by Microsoft.

.NET Languages

● The types of applications that can be built in the .Net framework are classified
broadly into the following categories:

➔ WinForms – This is used for developing Forms-based applications, which would
run on an end-user machine. Notepad is an example of a client-based application.

➔ ASP.Net – This is used for developing web-based applications, which are made to
run on any browser such as Internet Explorer, Chrome, or Firefox. The Web
application would be processed on a server, which would have Internet
Information Services Installed.

➔ ADO.Net – This technology is used to develop applications to interact with The
.Net Framework Databases such as Oracle or Microsoft SQL Server.

.NET Languages

Components of .NET Framework

The .Net framework mainly contains two components :

1. Common Language Runtime(CLR) 2. .Net Framework Class Library (FCL)

1. Common Language Runtime(CLR)

➔ .Net Framework provides runtime environment called Common Language
Runtime (CLR).

➔ It runs all the .Net programs.

➔ CLR provides memory management and thread management.

➔ It allocates the memory for scope and deallocates the memory.

➔ The code which runs under the CLR is called as Managed Code.

➔ Programmers need not to worry on managing the memory if the programs are
running under the CLR. (memory management and thread management)

Components of .NET Framework

1. Common Language Runtime(CLR)

➔ Language Compilers (e.g. C#, VB.Net, J#) will convert the Code/Program to
Microsoft Intermediate Language-MSIL/Common Intermediate Language(CIL)
inturn this will be converted to Native Code by CLR.

➔ There are currently over 15 language compilers being built by Microsoft and other
companies also producing the code that will execute under CLR.

Components of .NET Framework

2. .Net Framework Class Library (FCL)

➔ It accesses the library classes and methods.
➔ It is also called as Base Class Library.
➔ It is common for all types of application.
➔ Following are the applications in .Net Class Library:

1. XML web services

2. Windows services

3. Windows application

4. Web applications

5. Console application

Components of .NET Framework

C# Language Basics

● C# (C-Sharp) is a object oriented programming language developed by Microsoft that
runs on the .NET Framework.

● C# is used to develop web apps, desktop apps, mobile apps, games, and much more.
C# is an object-oriented programming language.

● In Object-Oriented Programming methodology, a program consists of various objects
that interact with each other by means of actions.

● The actions that an object may take are called methods.

● Objects of the same kind are said to have the same type or, are said to be in the same
class.

C# Syntax
use classes from the System namespace

namespace is used to organize your code, and
it is a container for classes and other
namespaces

Console is a class of the System
namespace, which has a
WriteLine() method that is used
to output/print text.

class is a container for data and methods
Main method- Any code inside its curly
brackets {} will be executed

If you omit the using System line, you would have to write
System.Console.WriteLine() to print/output text.

Casting objects

Casting objects

It is also possible to convert data types explicitly by using built-in methods, such as

OBJECT BASED MANIPULATION

Classes
● Class is a blueprint for a data type.
● Objects are instances of a class.
● The methods and variables that constitute a class are called members of the class.

Defining a Class

A class definition starts with the
keyword class followed by the class
name; and the class body enclosed by
a pair of curly braces.

Class methods
A method is a group of statements that together perform a task. Every C# program has at least
one class with a method named Main.

Static members
● Declaring a member of a class as static, it means no matter how many

objects of the class are created, there is only one copy of the static
member.

● The keyword static implies that only one instance of the member exists
for a class.

● Static variables are used for defining constants because their values can
be retrieved by invoking the class without creating an instance of it.

● Static variables can be initialized outside the member function or class
definition.

● The static variables can also be initialized inside the class definition.

Static members

Partial class
● A partial class splits the definition of a class over two or more source

files. We can create a class definition in multiple files but it will be
compiled as one class.

● Suppose we have a "Person" class. That definition is divided into the two
source files "Person1.cs" and "Person2.cs". Then these two files have a
class that is a partial class.

● ASP.NET is an open source web
framework, created by Microsoft, for
building modern web apps and services
with .NET.

● ASP.NET is cross platform and runs on
Windows, Linux, macOS, and Docker.

● ASP.NET is a web framework designed and
developed by Microsoft.

● It is used to develop websites, web
applications and web services.

● It provides fantastic integration of HTML,
CSS and JavaScript.

● It is built on the Common Language
Runtime (CLR) and allows programmers to
write code using any supported .NET
language.

ASP .NET

Anatomy of a Web Form
● An ASP.NET page is made up of a number of server controls along with

HTML controls, text, and images.
● Sensitive data from the page and the states of different controls on the

page are stored in hidden fields that form the context of that page
request.

● An ASP.NET page is also a server side file saved with the .aspx
extension.

● It is modular in nature and can be divided into the following core
sections:

1. Page Directives: set up the environment for the page to run
2. Code Section: code section or the code behind file provides all these
event handler routines, and other functions used by the developer.
3. Page Layout: The page layout provides the interface of the page.

Anatomy of a Web Form
Webform.aspx

Anatomy of a Web Form

Page Directives
● The Page directive defines the attributes specific to the page file for the page parser

and the compiler.

● The page directive gives ASP.NET basic information about how to compile the page.

● It indicates the language used for the code and the way to connect event handlers.

● If the code-behind approach is used, the page directive also indicates where the code
file is located and the name of the custom page class.

● The basic syntax of the Page directive is:

Some Page Directive Attributes
Attribute name Description

AutoEventWireup This attribute specifies whether the page parser should automatically
bind page events to methods in the code-behind class. The default value
is true .

Language This attribute specifies the programming language for the code-behind
file.

CodeBehind The name of the code behind file.

Inherits This attribute specifies the name of the code-behind or other class that
inherits from the Page class.

ClientTarget This attribute specifies the browser for which the server controls should
render content.

ErrorPage This attribute specifies the URL that the page should redirect to if an
unhandled page exception occurs.

Code-behind Class
1. The code-behind class is an essential concept that separates the visual

presentation (UI markup) of a web page from the code logic that controls its
behavior and functionality

2. It is composed in a different class record that can have the extension of
.aspx.cs or .aspx.vb relying upon the language used.

3. This relationship between your class and the web page is established by a Page
directive at the top of the .aspx file using the inherits attribute.

Adding Event Handlers

Adding Event Handlers

Adding Event Handlers

Adding Event Handlers

ANATOMY OF AN ASP.NET APPLICATION
ASP.NET File Types

ASP.NET File Types

ASP.NET File Types

● The HTML server controls are
basically the standard HTML
controls enhanced to enable
server side processing.

● By default, HTML elements(anchor
tag, header tags ,input elements
etc) on an ASP.NET Web page are
not available to the server.

● These components are treated as
simple text and pass through to
the browser.

● HTML server controls provide
automatic state management and
server-side events.

HTML
SERVER
CONTROLS

CONVERT HTML ELEMENT TO SERVER CONTROL

● Adding the attribute runat="server" and adding an id attribute to make them available for
serverside processing.

● All the HTML Server controls can be accessed through the Request object.

● The HTML server controls have the same HTML output and the same properties as their
corresponding HTML tags.

Example

The following are HTML server controls that are available in ASP.NET:-

VIEW STATE

● ViewState is a built-in feature in ASP.NET that allows you to preserve and maintain the
state of controls and data between postbacks.

● Postbacks occur when a page is submitted to the server for processing, typically
triggered by user actions like button clicks.

● It is a Page-Level State Management technique.

Advantages of View State

● Simplicity and Ease of Use - There is no need for complex codes and logical thinking to
implement ViewState. It is simple and makes storing form data between page
submissions easy.

● Flexibility - It is easy to enable, configure, and disable View State properties on a
control-by-control basis.

● Server-Independent - There are absolutely no server resources required to use View
State. It is contained in a structure within the page load.

● Enhanced Security - The View State values go through hashing, encoding, and
compression for Unicode implementation.

VIEW STATE

Disadvantages of View State

● Security Risk: The Information of View State can be seen in the page output source
directly. You can manually encrypt and decrypt the contents of a Hidden Field, but It
requires extra coding. If security is a concern then consider using a Server-Based state
Mechanism so that no sensitive information is sent to the client.

● Performance: Performance is not good if we use a large amount of data because View
State is stored in the page itself and storing a large value can cause the page to be slow.

● Device limitation: Mobile Devices might not have the memory capacity to store a large
amount of View State data.

● It can store values for the same page only

THE HTMLCONTROL CLASS

● The HtmlControl object is pretty important to HTML server controls. Because every
property and method it has is inherited by every HTML server control

● The HTML server controls have their own properties and methods, as well, but they all
have the properties and methods contained in the HtmlControl object.

Html InputControl Class

● Just like the HtmlContainerControl, the HtmlInput inherits from the HtmlControl
and adds a few properties of its own for the different object that live off it.

● It brings three additional properties to the table

Page Class

● Page class represents an .aspx file, also known as a Web Forms page, requested
from a server that hosts an ASP.NET Web application.

● Every web page is a custom class that inherits from the system.web.UI.Page
control.

● Page class acquires a number of properties that our code can use:

Page Class

Page Class

global.asax File
global.asax allows you to write code that runs in response to "system level" events, such
as the application starting, a session ending, an application error occuring, without
having to try and shoe-horn that code into each and every page of your site.

1. Application_Start: Fired when the first instance of the HttpApplication class is
created. It allows you to create objects that are accessible by all HttpApplication
instances.

2. Application_End: Fired when the last instance of an HttpApplication class is
destroyed. It's fired only once during an application's lifetime.

3. Session_Start: Fired when a new user visits the application Web site.

4. Session_End: Fired when a user's session times out, ends, or they leave the
application Web site.

global.asax File
5. Application_BeginRequest: This event is triggered at the beginning of each HTTP
request made to the application. It's useful for performing preprocessing tasks before the
actual request processing begins.

6. Application_AuthenticateRequest: Fired when the security module has established
the current user's identity as valid. At this point, the user's credentials have been
validated.

7. Application_Error: Fired when an unhandled exception is encountered within the
application.

WEB.CONFIG
● Every web application includes a web.config file that configures fundamental

settings—everything from the way error messages are shown to the security
settings that lock out unwanted visitors.

● The settings are stored in XML files that are separate from your application
code. In this way you can configure settings independently from your code.

● Visual Studio generates a default web.config file for each project.

● An application can run without a web.config file, however, we cannot debug an
application without a web.config file.

.NET Technologies

UNIT 2

Web
controls

● Web Controls are small
building blocks of the GUI
(Graphical User Interface),
which include labels, text
box, buttons, etc which
provide rich functionality
in your pages.

● Allow developers to create
dynamic and interactive web
pages without writing
extensive HTML or JavaScript
code.

Advantages of Web Controls over HTML Elements:

1. Abstraction for consistent UI across browsers.

2. Server-side events for easy code execution.

3. Automatic ViewState management.

4. Built-in rich functionality and customization
options.

5. Simplified development with reduced reliance on
JavaScript

WEB CONTROL CLASSES
● Web control classes are

defined in the
System.Web.UI.WebControls
namespace.

WEB CONTROL BASE CLASS
● Web controls provides the properties, methods, and events that

are common to all Web server controls.

● Most web controls begin by inheriting from the WebControl base
class.

● This class defines the essential functionality for tasks such as
data binding and includes some basic properties that you can use
with almost any web control.

Properties of WebControl Base Class:

Properties of WebControl Base Class:

Methods of WebControl Base Class:

Events of WebControl Base Class:

LIST CONTROLS

1. The list controls include the
➢ ListBox
➢ DropDownList
➢ CheckBoxList
➢ RadioButtonList
➢ BulletedList
2. Work same way but are

rendered differently
3. All the selectable list

controls provide a
SelectedIndex property that
indicates the selected row as
a zero-based index.

4. For example, if the first
item in the list is selected,
the SelectedIndex will be 0.

Listbox control
● Represents a user interface element for

displaying a list of items, allowing
single or multiple item selection.

● The SelectionMode property determines
whether single or multiple items can be
selected.

● In single selection mode, only one item
can be selected.

● In multiple selection mode, users can
select multiple items by pressing Ctrl or
Shift key.

● Example of creating a ListBox:

Listbox control

Drop Down list
● Allows users to select an item from a predefined list.

● Supports selecting only one item at a time.

● Example of creating a DropDownList:

Checkbox list
● Used when selecting one or more options from

several choices.

● Supports selecting multiple items.

● Example of creating a CheckBoxList:

Radio Button List
● Displays a list of radio buttons.
● Allows selecting only one item.
● Example of creating a RadioButtonList:

Radio Button List

bulleted List
● Displays items in different styles (unordered or ordered

list).
● Supports various bullet styles like Circle, Disc, Square,etc.
● Example:

Table control

● Table class is used to build
an HTML table.

● Table class is included in
System.Web.UI.Controls
namespace.

● Essentially, the Table
control is built out of a
hierarchy of objects.

● Each Table object contains
one or more TableRow objects.

● In turn, each TableRow object
contains one or more
TableCell objects.

● Each TableCell object
contains other ASP.NET
controls or HTML content that
displays information.

Properties of

Table class

Creating table at design time:

 WEB CONTROL EVENTS AND AUTOPOSTBACK
● One of the main limitations of HTML server controls is their

limited set of useful events—they have exactly two.

● HTML controls that trigger a postback, such as buttons, raise
a ServerClick event.

● Input controls provide a ServerChange event that doesn’t
actually fire until the page is posted back.

The page-processing sequence

● When event occurs on client side some events such as Click
event of a button take place immediately, because when
clicked, the button post back the page.

● However, other actions do cause events but don’t trigger a
postback.

● For example, when user chooses a new item in a list or changes
the text in text box.

● In these cases, without postback your code has no way to run.

ASP.NET handles this by giving you two options:

1. Wait until the next postback to react to the event. Like to
react to SelectedIndexChanged event in a list, when user
selects an item in a list, nothing happens immediately. But if
user clicks a button to postback the page, two events fire:
ButtonClick followed by ListBox.SelectedIndexChanged.

2. To use the automatic postback feature to force a control to
post back the page immediately when it detects a specific user
action. In this, when the user clicks a new item in the list, the
page is posted back, your code executes, and a new version of the
page is returned.

● If you want to capture a change event (such as TextChanged,
CheckedChanged, or SelectedIndexChanged) immediately,you need
to set the control’s AutoPostBack property to true.

● Depending on the result you want, you could have a page that
has some controls that post back automatically and others that
don’t.

ASP.NET Page Life cycle
1. Page Request: The cycle begins

when a user requests an ASP.NET
page by entering its URL or
interacting with a control that
triggers a postback.

2. Start and Initialization: The
page initialization process takes
place, including creating
controls and loading ViewState.
This step occurs on every page
request.

3. Page_Init: Developers can utilize
this event to initialize controls
and set their initial properties.
However, ViewState is not yet
fully loaded at this point.

ASP.NET Page Life cycle
4.Page_Load: Code within this event is executed, often involving
data loading, validation, and populating controls. It's a
critical point to distinguish between the initial load and
postbacks.

5. Control Events: If any controls triggered postbacks, their
associated event handlers are executed. This includes actions
like button clicks or selection changes.

6. PreRender: The Page.PreRender event fires, and the page is
rendered (transformed from a set of objects to an HTML page).

7. Unload: After rendering, cleanup tasks and resource release
are performed. This is the last opportunity to interact with
controls and the page. The Page_Unload is final event in the
cycle, used for cleanup and finalization. The page instance is
released after this point.

● State management in ASP.NET
refers to the mechanisms and
techniques used to maintain
the state (data and values) of
a web application across
multiple requests and page
transitions.

● ASP.NET offers various ways to
manage state, allowing
developers to preserve user
input, control states, and
other relevant data between
different interactions with
the application.

State
Management

View State
● ViewState is a important client side state management

technique.
● ViewState is used to store user data on page at the time of

post back of web page.
● ViewState does not hold the controls, it holds the values of

controls.
● It does not restore the value to control after page post back.
● ViewState can hold the value on single web page, if we go to

other page using response.redirect then ViewState will be
null.

● When we require value of page variable to be maintained during
page postback, we can use View state to store those value.

● “EnableViewState” property is used for both Page Level and
Server contact level to manage the view state.

View State
Limitation of view state

1. It increases the page size
2. Can impact performance
3. Can potentially expose data in the rendered HTML.
4. Viewstate can be used only with single page.
5. It is storing the information of an hidden field, so it can be

seen in source code in browser, hence it is not secure way.

Query String
1. A common approach is to pass information by using a query

string in the URL.
2. This approach is commonly found in search engines.
3. For example, if you perform a search on the Google website,

you’ll be redirected to a new URL that incorporates your
search parameters

4. There is a limitation of length of query string. So query
string cannot be used to send very large data.

5. Query string are visible to the user, so it should not be used
to send sensitive information such as username, password
without encryption.

6. Request object of QueryString property is used to retrieve the
query string.

Query String
Usage and Structure:

● The query string is a part of the URL that comes after the
question mark (?).

● It's composed of one or more key-value pairs separated by
ampersands (&).

● Query strings are commonly used to transmit data from one page
to another.

Example:

http://www.google.ca/search?q=organic+gardening

• The query string is the portion of the URL after the question
mark.

• In this case, it defines a single variable named q, which
contains the string organic+gardening.

Query String

Query String

SenderPage

ReceiverPage

cookies
1. Cookies are small pieces of data that are stored on the

client's machine to retain information between requests.
2. They are often used to store user preferences, login sessions,

and other stateful information.
3. In ASP.NET, cookies can be managed using the HttpCookie class.
4. Cookies have limitations, including a size limit and the fact

that they are stored on the client's machine, making them less
secure for sensitive information.

Cookies

Cookies

SESSION STATE
1. Session state is a server-side state management technique in

ASP.NET that allows you to store and retrieve user-specific
data across multiple requests.

2. It provides a way to maintain state information for individual
users during their entire session on a website.

3. This is particularly useful for scenarios where you need to
store user specific data like shopping cart contents, user
preferences, or login sessions.

4. Session state uses a unique session identifier (usually stored
in a cookie or as part of the URL) to associate a user with
their session data on the server.

5. The data is stored on the server's memory, a database, or an
external state server, depending on the session state mode you
choose.

SESSION STATE

SESSION STATE

SESSION STATE
These are properties and methods provided by ASP.NET's
HttpSessionState class, which is used for managing session state in
web applications. They allow you to interact with the session data
stored on the server for each user

SESSION STATE

CONFIGURING SESSION STATE
You configure session state through the web.config file for your
current application.

Application State
1. Application state is a concept in ASP.NET that allows you to

store data that is shared across all users and sessions of an
application.

2. Unlike session state which is user-specific, application state
is shared among all users and is accessible throughout the
entire application.

3. Example:

● Validation controls in ASP.NET
are used to validate user
input on web forms to ensure
that the data entered by users
meets specific criteria or
formats.

● Validation controls can be
applied to various types of
user input controls such as
textboxes, dropdown lists,
checkboxes, and more.

● 2 types of validations:

- Client side validation
- Server side validation

Validations

● Server Side Validation
Server-side validation is the process of validating user input and
data on the server after it has been submitted by the user. Unlike
client-side validation, which occurs in the user's browser using
JavaScript, server-side validation takes place on the web server
after the data has been posted back from the client.

● Client Side Validation
Client-side validation is the process of validating user input and
data directly within the user's web browser using client-side
scripting languages like JavaScript. This type of validation occurs
before the data is submitted to the server, providing immediate
feedback to users and reducing the need for round-trips to the
server for validation.

Validation Controls
The BaseValidator
class is the
foundation for
validation controls
in ASP.NET.
Some key properties
of the
BaseValidator class

Validation Control

Validation Control

Manual validation
1. Manual validation in ASP.NET refers to the process of

validating user input without relying on built-in
validation controls.

2. Instead of using validation controls like
RequiredFieldValidator, RegularExpressionValidator , etc.,
you perform validation using code-behind logic.

3. This gives you more control over the validation process
and allows you to customize the validation logic as
needed.

Manual validation

VALIDATION WITH REGULAR EXPRESSIONS
1. Validation with regular expressions in ASP.NET allows you

to define complex patterns that user input must match.

2. Regular expression validation is useful when you need to
ensure that input follows a specific format, such as email
addresses, phone numbers, passwords, and more.

3. A phone number must be a set number of digits, an e-mail
address must include exactly one @ character (with text on
either side)

4. ASP.NET provides the RegularExpressionValidator control
for this purpose.

VALIDATION WITH REGULAR EXPRESSIONS

VALIDATION WITH REGULAR EXPRESSIONS

VALIDATION WITH REGULAR EXPRESSIONS

VALIDATION WITH REGULAR EXPRESSIONS

VALIDATION WITH REGULAR EXPRESSIONS

● Rich controls are web controls that
model complex user interface elements.

● Provides object model that has complex
HTML representation and also client-side
JavaScript

● A typical rich control can be programmed
as a single object but renders itself
using a complex sequence of HTML
elements.

● Rich controls can also react to user
actions (such as a mouse click on a
specific region of the control) and
raise more-meaningful events that your
code can respond to on the web server.

● Rich controls, also known as Web server
controls or ASP.NET controls

Rich
controls

CALENDAR CONTROL
1. The Calendar control in ASP.NET is a rich control that

provides an interactive calendar interface for selecting
dates.

2. The Calendar control is part of the
System.Web.UI.WebControls namespace and offers various
features for date selection and customization.

3. To use the Calendar control, you can simply add it to your
ASP.NET page using the <asp:Calendar> tag.

4. For example:

CALENDAR CONTROL- Formatting the Calendar

CALENDAR CONTROL- CalendarDay Properties

ADROTATOR CONTROL
1. The AdRotator control in ASP.NET is used for displaying a

sequence of advertisements (ads) on a webpage.

2. It is commonly used to rotate different banner ads,
images, or HTML content in a cyclic manner.

3. The control makes it easier to manage and display
advertisements on a website without manually updating the
content each time.

4. Here's how the AdRotator control works:

web1.aspx

In this example, the AdvertisementFile property specifies the XML file
containing the ad information. The Target property indicates that
clicking on an ad will open the link in a new browser tab. The Width and
Height properties set the dimensions of the displayed ad.

Ads.xml

In this XML, each <Ad> element represents an advertisement with
properties such as ImageUrl , NavigateUrl , and AlternateText .

The AdRotator control helps streamline the process of displaying
rotating ads on a webpage, making it easier to manage and update
advertisement content without modifying the HTML code.

MultiView Control
1. The MultiView control in ASP.NET provides a way to display

different sets of content in separate views and allows
users to switch between these views without requiring
separate postbacks or page reloads.

2. It's commonly used to create tabbed interfaces or
step-by-step wizards where each step is presented in a
different view

3. Syntax

In this example, the MultiView control contains two views.
The user can switch between these views by clicking the
buttons. The code-behind sets the initial view and handles
the button clicks to change the active view accordingly

The MultiView control allows you to switch between
different views on a page. To control this switching, you
can use command names with buttons. Here are the command
names and their actions:

MasterPages in ASP.NET
1. What are MasterPages?

● MasterPages in ASP.NET serve as templates defining the
common structure and layout of a web application.

● They provide uniformity across multiple pages while
accommodating varied content.

● Master pages have a different file extension (.master
instead of .aspx) and they can’t be viewed directly by a
browser.

● Instead, master pages must be used by other pages, which
are known as content pages. Essentially, the master page
defines the page structure and the common ingredients.

● A single master page might define the layout for the
entire site.

MasterPages in ASP.NET
2. Benefits of MasterPages:

1. Consistency: Maintain a consistent look and feel
throughout the application.
2. Ease of Maintenance: Changes in the MasterPage propagate
to all associated pages.
3. Separation of Concerns: Designers and developers work
independently on layout and content.
4. Navigation: Shared elements like headers and menus can be
placed in the MasterPage.

How to Use MasterPages:

How to Use MasterPages:

● When you create a master page, you’re building
something that looks much like an ordinary ASP.NET web
form.

● The key difference is that, although web forms start
with the Page directive, a master page starts with a
Master directive that specifies the same information.

● The ContentPlaceHolder is the portion of the master
page that a content page can change. Or, to look at it
another way, everything else that’s set in the master
page is unchangeable in a content page.

● When you create a content page, ASP.NET links your page
to the master page by adding an attribute to the Page
directive.

● This attribute, named MasterPageFile, indicates the
associated master page.

WEBSITE
NAVIGATION

● ASP.NET provides various
site-navigation features
which gives a consistent
way for visitors to
navigate the
site.

● These features are
- Site Maps
- URL Mapping and Routing
- SiteMapPath.

Sitemaps
Site maps are used to define a website's navigation
structure, making it easier for users to navigate
between pages.

Components of ASP.NET Navigation
1. Site Map Definition: Site maps define the organization of
web pages using XML elements.
2. Data Source Control (SiteMapDataSource): This control
reads the site map file and converts it into
an object model.
3. Navigation Controls: These controls utilize the site map
information to create navigation menus,breadcrumb links, and
more

Sitemaps
Creating Site Maps - Key Rules

Rule 1: Site Maps Begin with the <siteMap> Element
● Every Web.sitemap file starts with the <siteMap> element.
● The xmlns attribute is essential for ASP.NET recognition.

Rule 2: Each Page Is Represented by a <siteMapNode> Element
● Pages are represented using the element, containing

attributes for title, description, and URL

Creating Site Maps - Key Rules

Rule 3: A <siteMapNode> Element Can
Contain Other <siteMapNode> Elements
● Nodes can be nested to create page

groups and subgroups within the site
map.

Creating Site Maps - Key Rules

Rule 4: Every Site Map Begins with a Single <siteMapNode>
● A site map must have a single root <siteMapNode> that

contains all other nodes.
● That means the following is not a valid site map, because

it contains two top-level nodes:

● The following site map is valid, because it has a single
top-level node (Home), which contains two more nodes:

Creating Site Maps - Key Rules

Rule 5: Duplicate URLs Are Not Allowed
● Each site map node must have a unique URL.
● Similar URLs with different query string arguments are

allowed.
● These two nodes are acceptable, even though they lead to

the same page (products.aspx), because the two URLs have
different query string arguments at the end.

 URL MAPPING
URL mapping in ASP.NET allows you to associate multiple URLs
with the same page, offering a way to simplify and enhance
the user experience. Here's a breakdown of how URL mapping
works:

Purpose of URL Mapping:
● Use multiple URLs to lead to a single page.
● Provide shorter, user-friendly, or meaningful URLs while

maintaining a single-page logic.

URL MAPPING
Concept of URL Mapping:
● Map a request URL to a different URL using rules defined

in the web.config file.
● Mapping rules are applied before any other processing

occurs.
● Requested URLs must use a file type extension that's

mapped to ASP.NET for the mapping to work

URL Mapping Configuration:
● URL mappings are defined in the <urlMappings> section of

the web.config file.
● Each mapping includes the original request URL and the

mapped destination URL.

URL MAPPING

Matching and Redirection:
● For a match to occur, the submitted browser URL must

closely match the URL specified in the web.config file.
● Redirection takes place in a way similar to

Server.Transfer() , without a round-trip.

URL MAPPING
● The URL in the browser will still show the original

request URL, not the redirected page's URL.

Benefits:
● Simplifies URLs and makes them more user-friendly.
● Enables you to organize and structure URLs logically.
● Provides a cleaner and consistent user experience.

 URL ROUTING
● Unlike URL mapping, URL routing doesn’t take place in the

web.config file. Instead, it’s implemented using code.
1. Purpose of URL Routing:
● Create user-friendly and search engine optimized URLs.
● Organize URLs based on a logical and hierarchical structure.
● Improve the overall user experience and navigation.
2. Implementing URL Routing:
● URL routing is commonly set up in the Application_Start event

of the Global.asax file.
● The RouteTable.Routes collection is used to define routes

using the MapPageRoute method.
● A route consists of a unique name, a URL pattern with

placeholders, and the target page or handler.

In this example, two routes are defined: one for displaying
product details and another for listing products in a specific
category

Benefits of URL Routing:
● Improved SEO: Search engines favor descriptive URLs,

resulting in better search engine rankings.
● User-Friendly: Users find it easier to understand and

remember meaningful URLs.
● Flexibility: Dynamic placeholders in URLs allow for

parameterized pages.
● Centralized Configuration: Routes can be managed in one

place, improving maintenance.

SiteMapPath control
● The SiteMapPath control is an ASP.NET control that displays a

hierarchical representation of a sitemap.

● The sitemap is a collection of pages that are organized in a
tree-like structure. The SiteMapPath control

● can be used to display the sitemap in a variety of ways,
including as a list, a table, or a navigation bar.

● The SiteMapPath control is a server control, which means that
it is processed on the server before it is rendered to the
client. This allows the SiteMapPath control to access the
sitemap and dynamically generate the navigation links.

● The SiteMapPath control has a number of properties that can
be used to customize its appearance and behavior. These
properties include:

● The SiteMapPath control can be used to display the sitemap in
a variety of ways. Here are a few examples:

● As a list: The SiteMapPath control can be used to display the
sitemap as a list of links. This can be done by setting the
PathSeparator property to a space character.

● As a table: The SiteMapPath control can be used to display
the sitemap as a table. This can be done by setting the
PathSeparator property to a table break character.

● As a navigation bar: The SiteMapPath control can be used to
display the sitemap as a navigation bar. This can be done by
setting the CurrentNodeStyle property to a style that
highlights the current node and the OtherNodeStyle property
to a style that is used to render the other nodes.

● The TreeView has a slew of
properties that let you
change how it’s displayed on
the page. One of the most
important properties is
ImageSet, which lets you
choose a predefined set of
node icons.

● The TreeView offers 16
possible ImageSet values,
which are represented by the
TreeViewImageSet enumeration.

TreeView Control

MENU CONTROL
● The Menu control in ASP.NET is used to create hierarchical

navigation menus. It allows you to define menu items and
submenus in a structured manner. Here are some key points
about the Menu control:

In this example, the Menu control is bound to a sitemap data source using the
SiteMapDataSource control. The Orientation property is set to "Horizontal" to display the
root-level menu items horizontally.

ADO.NET
(ActiveX Data Object .NET)

UNIT 3

● Database access technology

developed by Microsoft as part of

the .NET framework known as

ActiveX Data Object or ADO.NET.

● ADO.NET consists of managed

classes that allow .NET

applications to connect to data

sources (relational databases),

execute commands, and manage

disconnected data.

● ADO is automatically installed with

Microsoft IIS

What is
ADO?

DATA PROVIDER MODEL / ADO.NET ARCHITECTURE
● ADO.NET uses a multilayered architecture that revolves around a few key

concepts, such as Connection, Command, and DataSet objects.

● In many past database technologies, such as classic ADO, programmers use a

generic set of objects no matter what the underlying data source is.

● For example, if you want to retrieve a record from an Oracle database using ADO

code, we use the same Connection class you would use to tackle the task with

SQL Server.

● ADO.NET revolves around Data Providers and is built upon the System.Data

namespace.

● This namespace contains classes shared across different data providers, ensuring

consistency in data access

DATA PROVIDER MODEL / ADO.NET ARCHITECTURE

ADO.NET Data Providers:

● A data provider is a set of ADO.NET classes that allows you to access a specific

database, execute SQL commands, and retrieve data.

● A data provider is a bridge between your application and a data source. The

classes that make up a data provider include the following:

1. Connection: You use this object to establish a connection to a data source.

2. Command: You use this object to execute SQL commands and stored procedures.

3. DataReader: This object provides fast read-only, forward-only access to the data

retrieved from a query.

4. DataAdapter: This object performs two tasks. First, you can use it to fill a DataSet

with information extracted from a data source. Second, you can use it to apply

changes to a data source, according to the modifications made in a DataSet.

ADO.NET Data Providers:

● Instead, it includes different data providers specifically designed for different types

of data sources.

● Each data provider has a specific implementation of the Connection, Command,

DataReader, and DataAdapter classes that’s optimized for a specific RDBMS.

● For example, if you need to create a connection to a SQL Server database, use a

connection class named SqlConnection.

● You can easily create custom ADO.NET providers to wrap non relational data

stores, such as the file system or a directory service.

● Some third-party vendors also sell custom providers for .NET

ADO.NET Data Providers:

● The .NET Framework is bundled with a small set of four providers: ADO.Net

1. SQL Server provider: Provides optimized access to a SQL Server database. Uses

the System.Data.SqlClient namespace.

2. OLE DB provider: Provides access to any data source that has an OLE DB driver.

Uses the System.Data.OleDb namespace.

3. Oracle provider: Provides optimized access to an Oracle database. The .NET

Framework Data Provider for Oracle supports Oracle client software version 8.1.7

and later, and uses the System.Data.OracleClient namespace.

4. ODBC provider: Provides access to any data source that has an ODBC driver.

Uses the System.Data.Odbc namespace.

DataSet:

● The DataSet object stores data retrieved from a data source in-memory.

● It operates independently of the data source, supporting disconnected data

management.

● DataSet holds multiple DataTables and supports relationships, constraints, and

more

Direct Data Access
● ADO.NET does not provide a single set of objects that communicate with multiple

database management systems (DBMSs).

● ADO.NET supports multiple data providers, each of which is optimized to interact

with a specific DBMS.

● The first benefit of this approach is that you can program a specific data provider

to access any unique features of a particular DBMS.

● The second benefit is that a specific data provider can connect directly to the

underlying engine of the DBMS in question without an intermediate mapping layer

standing between the tiers to communicate with a specific type of data source.

.NET Framework Data Provider for SQL Server
● Uses its own protocol for communicating with SQL Server.

● Optimized for direct access to SQL Server, avoiding OLE DB or ODBC layers.

● Classes are located in the System.Data.SqlClient namespace.

● Supports local and distributed transactions.

● To connect to Microsoft SQL Server, use the SqlConnection object of the .NET

framework Data Provider for SQL Server

● ADO.NET SqlConnection Class- It is used to establish an open connection to

the SQL Server database. It is a sealed class so that cannot be inherited.

● SqlConnection class uses SqlDataAdapter and SqlCommand classes together

to increase performance when connecting to a Microsoft SQL Server database.

● Connection does not close explicitly even it goes out of scope. Therefore, you

must explicitly close the connection by calling Close() method.

Creating a Connection
● Example code:

Creating a Connection

Creating a Connection

Creating a Connection
It is not recommended to hardcode a connection string. Storing the connection string in the
configuration file(web.config) is most suitable. So if any changes happen then they can be
done in one place only.

Note: You need to put the above connection string inside the configuration section of
the configuration file.

Creating a Connection
How to read the connection string from the app.config file?
Accessing the connection string from web.config

SELECT COMMAND
The Command Object is a fundamental component of ADO.NET.

● It uses a connection object to execute SQL queries.

● Queries can be in the form of inline text, stored procedures, or direct table

access.

● The Command Object can execute queries and stored procedures with

parameters.

● When a SELECT query is executed, the result set is usually stored in a DataSet

or a DataReader object.

Properties of

SqlCommand class

Properties of execute

methods

DATAREADER
● A data reader provides an easy way for the programmer to read data from a

database as if it were coming from a stream.

● The data reader is also called a firehose cursor or forward read-only cursor

because it moves forward through the data.

● The data reader not only allows you to move forward through each record of

the database, but it also enables you to parse the data from each column.

● The DataReader class represents a data reader in ADO.NET

● Similar to other ADO.NET objects, each data provider has a data reader class

for example; OleDbDataReader is the data reader class for OleDb data

providers. Similarly, SqlDataReader and ODBC DataReader are data reader

classes for SQL and ODBC data providers, respectively.

DATAREADER
● The IDataReader interface defines the function of a data reader and works as

the base class for all data provider-specific data reader classes

DataReader Properties

DATAREADER
DataReader methods

DATAREADER
example

Connected V/s Disconnected Data Access
Connected Data Access Disconnected Data Access

In Connected Data Access, the application
maintains an open and continuous connection to
the database while interacting with it. This
connection remains active as long as the
application is performing database operations.

 In Disconnected Data Access, the application
connects to the database temporarily to retrieve
data. Once the data is fetched, the database
connection is closed. The application then works
with the data in memory.

With a continuous connection, you can directly
execute SQL queries against the database in
real-time. This means that you can immediately
access and manipulate data as needed.

The data retrieved from the database is stored in
memory, typically within a DataSet or DataTable.
The application can manipulate and work with
this data without maintaining an active database
connection.

Connected Data Access provides access to
real-time data. Any changes made to the data in
the database by other applications or users can
be immediately reflected in your application.

Changes made to the in-memory data can be
tracked, and batch updates can be sent back to
the database when needed. This allows you to
update the database efficiently

Connected V/s Disconnected Data Access
Connected Data Access Disconnected Data Access

This approach is typically suitable for scenarios
where real-time data access and immediate
updates to the database are essential. For
example, in applications requiring continuous
monitoring or data input, such as online
transaction processing (OLTP) systems.

Disconnected Data Access is well-suited for
scenarios where you need to work with data
flexibly and efficiently without the overhead of a
continuous database connection. It's commonly
used in applications that require reporting, data
analysis, or scenarios where database
connections are costly.

 Key components include SqlConnection for
managing the database connection,
SqlCommand for executing SQL queries, and
SqlDataReader for reading query results.

 Key components include DataAdapter for
fetching data from the database and updating it,
DataSet or DataTable for storing data in
memory, and DataRow for working with
individual rows of data.

DATA BINDING
● Data binding is an aspect that allows us to associate a data source with

a control and have that control automatically display data.

● The main characteristic of data binding is that it’s declarative, not

programmatic. That means data binding is defined outside program,

alongside the controls in the .aspx page.

● Types of data binding:

- Single value

- Multi value

Single-Value Data Binding

● Single-Value Data Binding allows you to bind individual values from a data

source to specific properties of UI controls.

● Each data-bound control displays a single value from the data source. For

example, you can bind a TextBox's Text property to a single value from the

data source.

● Single-Value Data Binding is typically used when you want to display and

edit individual data fields. It is suitable for scenarios where each control

corresponds to a specific data attribute.

● Data binding expressions for single-value binding are enclosed within <%#

... %> delimiters in the .aspx markup

Single-Value Data Binding

● To evaluate a data binding expression, you must call the Page.DataBind()

method in program.

● While calling DataBind(), ASP.NET will examine all the expressions on page and

replace them with the corresponding value.

● If we forget to call the DataBind() method, the data binding expression won’t

be filled in instead, it just gets thrown away when page is rendered to HTML.

● In ASP.NET, most web controls (including TextBox, LinkButton, Image, and

many more) support single-value data binding.

● Examples: Binding a label's text to a user's name, binding a textbox to a

product's price, or binding an image control's source to an image URL are

examples of single-value data binding.

Single-Value Data Binding

In this example, we'll bind a single value (a user's name) to a Label control's Text

property.

In this case, the GetUserName() method retrieves the user's name from a data

source (or any source you prefer), and this name is bound to the Text property of

the lblUserName Label control using a data binding expression.

Multi-Value Data Binding/ Repeated- value data binding

● Multi-Value Data Binding allows you to bind collections of data, such as arrays,

lists, or datasets, to controls that display multiple values.

● Controls supporting multi-value binding can display a collection of items from

the data source. For example, a ListBox can display a list of items from a

dataset.

● Multi-Value Data Binding is used when you need to display a list or grid of

data, such as a list of products, a set of search results, or a table of records.

● Controls that support multi-value data binding include ListBox, DropDownList,

CheckBoxList, RadioButtonList, GridView, and others.

● Multi-Value Data Binding typically requires a data source that contains multiple

records or items, such as a dataset with multiple rows.

Multi-Value Data Binding/ Repeated- value data binding

● Multi-Value Data Binding involves setting the DataSource property of a control

to the data source and calling the DataBind() method to populate the control

with multiple values.

● Examples: Binding a dataset containing a list of products to a GridView,

binding a collection of items to a ListBox, or displaying search results in a

GridView are examples of multi-value data binding.

● In this example, we'll bind a collection of products to a DropDownList control

for the user to select from.

Multi-Value Data Binding/ Repeated- value data binding

Multi-Value Data Binding/ Repeated- value data binding

● Data Properties for List Controls Data Binding

Multi-Value Data Binding/ Repeated- value data binding

● Data Properties for List Controls Data Binding

DATA SOURCE CONTROLS – SQLDATASOURCE
● The SqlDataSource control represents a connection to a relational

database such as SQL Server or Oracle database, or data accessible

through OLEDB or Open Database Connectivity (ODBC).

● Connection to data is made through two important properties

ConnectionString and ProviderName.

● The following code snippet provides the basic syntax of the control:

● The SqlDataSource command logic is supplied through four properties:

○ SelectCommand

○ InsertCommand

○ UpdateCommand

○ DeleteCommand,

● Each command takes a string. The string we supply can be inline SQL

● Example: SqlDataSource that defines a SELECT command for

retrieving records.

DATA CONTROLS

GRIDVIEW CONTROL
● The GridView is an extremely flexible grid control for showing data in a

basic grid consisting of rows and columns.

● The GridView control is used to display the values of a data source in a

table. Each column represents a field, while each row represents a

record.

● The GridView control supports the following features:

1. Binding to data source controls, such as SqlDataSource.

2. Built-in sort capabilities.

3. Built-in update and delete capabilities.

4. Built-in paging capabilities.

GRIDVIEW CONTROL
5. Built-in row selection capabilities.

6. Programmatic access to the GridView object model to dynamically set

properties, handle events, and so on.

7. Multiple key fields.

8. Multiple data fields for the hyperlink columns.

9. Customizable appearance through themes and styles.

GRIDVIEW CONTROL- Defining Columns
● Each column in the GridView control is represented by a DataControlField

object. By default, the AutoGenerateColumns property is set to true, which

creates an AutoGeneratedField object for each field in the data source.

● Each field is then rendered as a column in the GridView control in the

order that each field appears in the data source.

● You can also manually control which column fields appear in the GridView

control by setting the AutoGenerateColumns property to false and then

defining your own column field collection.

● Different column field types determine the behavior of the columns in the

control. The following table lists the different column field types that can

be used.

GRIDVIEW CONTROL- Defining Columns

GRIDVIEW CONTROL- Defining Columns

GRIDVIEW CONTROL

DetailsView Control

DetailsView Control - Row field
● Each data row in the DetailsView control is created by declaring a field

control. Different row field types determine the behavior of the rows in the

control.

● Field controls derive from DataControlField. The following table lists the

different row field types that can be used.

DetailsView Control - Row field

DetailsView Control - Row field

FormView Control

FormView Control- Templates
● For the FormView control to display content, you need to create templates

for the different parts of the control.

● Most templates are optional; however, you must create a template for the

mode in which the control is configured.

● For example, a FormView control that supports inserting records must

have an insert item template defined. The following table lists the different

templates that you can create.

FormView Control

FormView Control

FormView Control

● XML stands for EXtensible
Markup Language XML is a
markup language much like
HTML. XML was designed to
describe data

● XML tags are not predefined.
You must define your own
tags

● XML uses a Document Type
Definition (DTD) or an XML
Schema to describe the data

● XML with a DTD or XML
Schema is designed to be self
descriptive

WORKING
WITH XML

XML CLASSES
● The .NET framework contains a rich set of classes for working with XML

data. Classes are divided into multiple namespaces.

● The main classes for working with XML data are as follows :

1. XmlTextReader

2. XmlTextWriter

3. XmlDocument

4. XmlDataDocument

5. XmlNodeReader

6. DocumentNavigator

7. DataDocumentNavigator

8. XslTransform

XmlTextWriter
1. The XmlTextWriter class is part of the System.Xml namespace and is used

for writing XML data.

2. It provides a way to create and format XML documents by writing

elements, attributes, and content to an output stream, such as a file or a

memory buffer.

3. XmlTextWriter provides methods like WriteStartElement , WriteEndElement

, and WriteElementString to create XML elements and their content.

4. You can add attributes to elements using WriteStartAttribute and

WriteEndAttribute methods.

5. It can automatically format the XML data for human readability with

indentation and line breaks.

XmlTextWriter

XmlTextWriter
6. So, we start by creating an instance of the XmlTextWriter class. It takes at

least one parameter, in this case the path to where the XML should be

written, but comes in many variations for various purposes.

7. The first thing we should do is to call the WriteStartDocument() method.

After that, we write a start element called "users". The XmlTextWriter will

translate this into <users>.

8. Before closing it, we write another start element, "user", which will then

become a child of "users". We then proceed to adding an attribute (age) to

the element, using the WriteAttributeString() method, and then we write the

inner text of the element, by calling the WriteString() method.

XmlTextWriter
9. We then make sure to close the first "user" element with a call to the

WriteEndElement() method.

10. This process is repeated to add another user, lastly we call the

WriteEndDocument() method.

11. To get the XmlWriter to write our data to the disk, we call the Close()

method. You can now open the file, "myfile.xml", in the same directory

where the EXE file of your project is, usually in the bin\debug directory.

XmlTextReader
1. The XmlTextReader class, also part of the System.Xml namespace, is

used for reading XML data.

2. It provides a forward-only, read-only way to parse and navigate through

XML documents.

3. XmlTextReader provides forward-only, read-only access to a stream of

XML data. The current node refers to the node on which the reader is

positioned.

4. The reader is advanced using any of the read methods and properties

reflect the value of the current node.

XmlTextReader
5. XmlTextReader reads XML data sequentially, from start to finish, in a

forward-only manner, which minimizes memory consumption and improves

performance.

6. XmlTextReader offers methods like Read , ReadStartElement ,

ReadEndElement , and ReadString to traverse XML elements and extract

data.

7. It can perform validation against XML schemas (XSD) and report errors

when the XML data doesn't conform to the schema.

XmlTextReader

XmlTextReader

CACHING
● Caching in .NET refers to the temporary storage of data in memory to

improve application performance by reducing the need to fetch the

same data repeatedly from the original source, such as a database or a

web service.

● Unlike many other performance enhancing techniques, caching

bolsters both performance and scalability.

● Performance is better because the time taken to retrieve the

information is cut down dramatically.

● Scalability is improved because you work around bottlenecks such as

database connections.

CACHING
● When we store information in a cache, we expect to find it there on a

Caching future request most of the time. However, the lifetime of that

information is at the discretion of the server.

● If the cache becomes full or other applications consume a large

amount of memory, information will be selectively evicted from the

cache, ensuring that performance is maintained. It’s this self sufficiency

that makes caching so powerful.

TYPES OF CACHING
.NET provides several types of caching mechanisms to achieve this:

1. Output Caching

2. Data caching

3. Fragment caching

4. Data source caching

1. Output Caching

● Output caching is used to cache the entire HTML output of a web

page.

● When a page is requested for the first time, ASP.NET processes the

page and caches the resulting HTML.

● Subsequent requests for the same page are served directly from the

cache without executing the page's code.

● Reduces server load and improves response time, especially for pages

with content that doesn't change frequently.

● Output caching can be configured using the @OutputCache directive in

ASP.NET Web Forms

● Different types of output caching are as follows:

A. Declarative Output Caching

❏ Output caching stores a copy of the final rendered HTML page to improve

performance.You can add the OutputCache directive to your ASP.NET

page to specify caching settings.

B. Caching and the Query String

❏ Caching allows you to efficiently reuse slightly stale data while improving

performance. You can use the VaryByParam attribute to cache separate

copies of the page based on query string parameters.

● Different types of output caching are as follows:

C. Caching with Specific Query String Parameters

❏ For more precise control, you can specify specific query string parameters

to vary caching. This is useful when you want to cache pages with different

query string values separately

2. Data caching

● Data caching is used to store data or objects in memory to avoid

repeated expensive data retrievals from sources like databases

● In your code, you manually store and retrieve data from the cache

using keys.

● When data is cached, it's stored in memory and can be quickly

accessed without performing the original data retrieval operation.

● Reduces database or data source load, improving application

performance

● You can set expiration policies on cached data, such as time-based

expiration or dependency-based expiration.

● You can add items to the cache using the Cache["key"] = item; syntax.

● A better approach is to use the Cache.Insert() method, which allows
you to specify various caching parameters, including dependencies,
expiration, and priority.

3. Fragment caching

4. Data source caching

● LINQ in C# is used to work with
data access from sources such as
objects, data sets, SQL Server,
and XML.

● LINQ stands for Language
Integrated Query. LINQ is a data
querying API with SQL like query
syntaxes.

● LINQ provides functions to query
cached data from all kinds of data
sources.

● The data source could be a
collection of objects, database or
XML files.

● We can easily retrieve data from
any object that implements the
IEnumerable<T> interface.

LINQ

(Language
Integrated

Query)

ASP.NET AJAX

1. AJAX stands for Asynchronous JavaScript and XML. This is a cross

platform technology which speeds up response time. The AJAX server

controls add script to the page which is executed and processed by

the browser.

2. However like other ASP.NET server controls, these AJAX server

controls also can have methods and event handlers associated with

them, which are processed on the server side.

3. The control toolbox in the Visual Studio IDE contains a group of

controls called the 'AJAX Extensions’

ScriptManager Control
● The ScriptManager is an important component in ASP.NET AJAX that is

used to manage client-script libraries, partial-page rendering, and other

client-side functionalities. It is primarily associated with ASP.NET Web

Forms applications

● It is both a server-side control (<asp:ScriptManager>) and a client-side

script (Sys.WebForms.PageRequestManager) that enables AJAX

functionality in ASP.NET web applications

● The ScriptManager control can be placed on your web page, typically

in the <form> tag, to enable AJAX features.

● It is essential to have only one ScriptManager control per page

●
●

ScriptManager Control
● In this example, we have added a ScriptManager control to the web

page. It enables AJAX functionality and handles JavaScript libraries

and scripts.

Partial Refreshes
● Partial page refreshes, often referred to as partial rendering or AJAX

updates, allow specific sections of a web page to be refreshed without

reloading the entire page.

● This technique greatly improves the user experience by reducing

flicker and improving response times.

● ASP.NET AJAX provides the UpdatePanel control to enable partial

page refreshes. You wrap the content you want to update in an

UpdatePanel .

● The UpdateMode property of the UpdatePanel determines when an

update should occur. Options include "Always" (default) or "Conditional"

(only when triggered explicitly).

● Partial refreshes are ideal for scenarios where you want to update

specific parts of a page, such as a shopping cart, chat messages, or

live search results, without affecting the rest of the page.

In this example, we have an UpdatePanel containing a label and a button.
When the button is clicked, only the content within the UpdatePanel will be
refreshed without reloading the entire page. Here's the server-side code to
handle the button click event:

Progress Notification
● Progress notification is a feature in ASP.NET AJAX that provides feedback

to users during asynchronous operations, indicating that something is

happening in the background.

● It is often implemented using the UpdateProgress control.

● The UpdateProgress control allows you to define content that is displayed

to the user while an asynchronous operation is in progress, typically

accompanied by a loading animation (e.g., a spinning wheel or progress

bar).

● Progress notification enhances user experience by letting users know that

their request is being processed, especially in cases where operations

may take some time to complete.

In this example, we use the UpdateProgress control to display a
loading spinner and a "Loading..." message during an asynchronous
operation within an UpdatePanel . When an operation is in progress,
this content will be shown automatically, and it will disappear when
the operation is completed.

Timed Refreshes
● Timed refreshes involve updating content on a web page at regular

intervals, without requiring user interaction.

● ASP.NET AJAX provides the Timer control (<asp:Timer>) to

facilitate timed refreshes.

● You set the Interval property of the Timer control to specify the time

(in milliseconds) between each refresh.

● When the timer's interval elapses, it triggers a postback (either full

or partial, depending on context) and invokes a server-side event

(e.g., OnTick).

Timed Refreshes
● Timed refreshes are useful for scenarios like displaying real-time data

(e.g., stock prices, weather updates), live notifications, or periodically

updating content on a page (e.g., news feeds).

In this example, we have a Timer control set to refresh every 5000

milliseconds (5 seconds). The timer is linked to a label. Here's the

server-side code to handle the timer tick event:

Timed Refreshes

This code updates the label's text with the current time every 5 seconds

without requiring any user interaction.

These examples demonstrate how to use ScriptManager, perform partial

refreshes, provide progress notifications, and implement timed refreshes in

ASP.NET AJAX applications.

